Fast, precise and dynamic distance queries

We present an approximate distance oracle for a point set <i>S</i> with <i>n</i> points and doubling dimension λ. For every ε > 0, the oracle supports (1 + ε)-approximate distance queries in (universal) constant time, occupies space [ε<sup>−<i>O</i>(λ)</sup> + 2<sup><i>O</i>(λ log λ)</sup>]<i>n</i>, and can be constructed in [2<sup><i>O</i>(λ)</sup> log<sup>3</sup> <i>n</i> + ε<sup>−<i>O</i>(λ)</sup> +2<sup><i>O</i>(λ log λ)</sup>]<i>n</i> expected time. This improves upon the best previously known constructions, presented by Har-Peled and Mendel [13]. Furthermore, the oracle can be made fully dynamic with expected <i>O</i>(1) query time and only 2<sup><i>O</i>(λ)</sup> log <i>n</i> + ε<sup>−<i>O</i>(λ)</sup> +2<sup><i>O</i>(λ log λ)</sup> update time. This is the first fully dynamic (1 + ε)-distance oracle.

[1]  Uri Zwick,et al.  Dynamic approximate all-pairs shortest paths in undirected graphs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[2]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric spanners , 2008, TALG.

[3]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[4]  Telikepalli Kavitha,et al.  Faster Algorithms for Approximate Distance Oracles and All-Pairs Small Stretch Paths , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[5]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[6]  Wei Yu,et al.  Distance Oracles for Sparse Graphs , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[7]  P. Indyk,et al.  On-line embeddings , 2010 .

[8]  Philip N. Klein,et al.  Preprocessing an undirected planar network to enable fast approximate distance queries , 2002, SODA '02.

[9]  Assaf Naor,et al.  Ramsey partitions and proximity data structures , 2005, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[10]  Aleksandrs Slivkins,et al.  Distributed approaches to triangulation and embedding , 2005, SODA '05.

[11]  Richard Cole,et al.  Dynamic LCA queries on trees , 1999, SODA '99.

[12]  Sandeep Sen,et al.  Approximate distance oracles for unweighted graphs in expected O(n2) time , 2006, TALG.

[13]  Richard Cole,et al.  Searching dynamic point sets in spaces with bounded doubling dimension , 2006, STOC '06.

[14]  Ittai Abraham,et al.  Embedding metric spaces in their intrinsic dimension , 2008, SODA '08.

[15]  Moshe Lewenstein,et al.  Dynamic weighted ancestors , 2007, SODA '07.

[16]  Uri Zwick,et al.  Dynamic Approximate All-Pairs Shortest Paths in Undirected Graphs , 2004, FOCS.

[17]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[18]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[19]  Liam Roditty Fully Dynamic Geometric Spanners , 2007, SCG '07.

[20]  Mihai Pa caron,et al.  Unifying the Landscape of Cell-Probe Lower Bounds , 2011 .

[21]  Stephen Alstrup,et al.  Improved Algorithms for Finding Level Ancestors in Dynamic Trees , 2000, ICALP.

[22]  Lee-Ad Gottlieb,et al.  Improved algorithms for fully dynamic geometric spanners and geometric routing , 2008, SODA '08.

[23]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[24]  Manor Mendel,et al.  Fast C-K-R Partitions of Sparse Graphs , 2008, Chic. J. Theor. Comput. Sci..

[25]  Robert Krauthgamer,et al.  Navigating nets: simple algorithms for proximity search , 2004, SODA '04.

[26]  Mihai Patrascu,et al.  Unifying the Landscape of Cell-Probe Lower Bounds , 2010, SIAM J. Comput..

[27]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[28]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[29]  Mikkel Thorup,et al.  Deterministic Constructions of Approximate Distance Oracles and Spanners , 2005, ICALP.

[30]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[31]  Lee-Ad Gottlieb,et al.  An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.

[32]  Leonidas J. Guibas,et al.  Deformable spanners and applications , 2004, SCG '04.