Interrelated pressure-temperature-time-paths of medium to high pressure metamorphic rocks in the Sierra Pie de Palo (W-Argentina): Evolution of a “hard” collisional wedge during an Ordovician microcontinent-arc collision
暂无分享,去创建一个
[1] A. McCarthy,et al. Formation of the Alpine Orogen by Amagmatic Convergence and Assembly of Previously Rifted Lithosphere , 2021 .
[2] C. V. Staal,et al. Accretion, Soft and Hard Collision: Similarities, Differences and an Application from the Newfoundland Appalachian Orogen , 2020, Geoscience Canada.
[3] Paula Armas,et al. The geodynamic history of the Famatinian arc, Argentina: A record of exposed geology over the type section (latitudes 27°- 33° south) , 2020, Journal of South American Earth Sciences.
[4] M. Basei,et al. Mid-crustal deformation in a continental margin orogen: structural evolution and timing of the Famatinian Orogeny, NW Argentina , 2019, Journal of the Geological Society.
[5] C. Casquet,et al. Metamorfismo de alto gradiente P/T en la Sierra de Pie de Palo (Sierras Pampeanas, Argentina): modelado de equilibrio de fases minerales e implicancias geodinámicas en el antearco famatiniano , 2019, Andean Geology.
[6] Patricia Martínez,et al. Structural setting of the Chanic orogen (Upper Devonian) at central-western Argentina from remote sensing and aeromagnetic data. Implications in the evolution of the proto-Pacific margin of Gondwana , 2018, Journal of South American Earth Sciences.
[7] M. Basei,et al. A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana , 2018, Earth-Science Reviews.
[8] S. Siegesmund,et al. Geochronology of shear zones – A review , 2018, Earth-Science Reviews.
[9] R. Romer,et al. Tectonometamorphic evolution along the Iapetus suture zone in Newfoundland: Evidence for polyphase Salinic, Acadian and Neoacadian very low- to medium-grade metamorphism and deformation , 2018, Tectonophysics.
[10] S. Siegesmund,et al. Late Paleozoic deformation and exhumation in the Sierras Pampeanas (Argentina): 40Ar/39Ar-feldspar dating constraints , 2017, International Journal of Earth Sciences.
[11] H. Massonne,et al. High-pressure/low-temperature metamorphism in the collision zone between the Chilenia and Cuyania microcontinents (western Precordillera, Argentina) , 2016 .
[12] H. Miller,et al. The crustal evolution of South America from a zircon Hf‐isotope perspective , 2016 .
[13] R. Pankhurst,et al. Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications , 2016 .
[14] P. Mueller,et al. Detrital-zircon geochronology and provenance of the Ocloyic synorogenic clastic wedge, and Ordovician accretion of the Argentine Precordillera terrane , 2015 .
[15] C. Galindo,et al. The Difunta Correa metasedimentary sequence (NW Argentina): relict of a Neoproterozoic platform? — elemental and Sr-Nd isotope evidence , 2015 .
[16] C. Casquet,et al. U–Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): Provenance and paleogeographic implications , 2015 .
[17] P. Bievre,et al. IUPAC-IUGS recommendation on the half life of 87Rb , 2015 .
[18] S. Chakraborty,et al. Timing, duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu–Hf garnet dating: A case study from the Sikkim Himalaya, NE India , 2014 .
[19] Paula Armas,et al. A Middle Paleozoic shear zone in the Sierra de Valle Fértil, Argentina: Records of a continent-arc collision in the Famatinian margin of Gondwana , 2014 .
[20] P. Renne,et al. Crustal shortening, exhumation, and strain localization in a collisional orogen: The Bajo Pequeño Shear Zone, Sierra de Pie de Palo, Argentina , 2014 .
[21] P. Renne,et al. Multiple migmatite events and cooling from granulite facies metamorphism within the Famatina arc margin of northwest Argentina , 2014 .
[22] T. Gerya,et al. Formation and Exhumation of Ultrahigh-Pressure Terranes , 2013 .
[23] H. Miller,et al. Early Paleozoic Structural Development in the Nw Argentine Basement of The Andes and Its Implication for Geodynamic Reconstruction , 2013 .
[24] P. Piccoli,et al. In situ monazite (U–Th)–Pb ages from the Southern Brasília Belt, Brazil: constraints on the high‐temperature retrograde evolution of HP granulites , 2012 .
[25] T. Gerya. Future directions in subduction modeling , 2011 .
[26] C. V. Staal,et al. The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block , 2011 .
[27] A. Langone,et al. Preservation of old (prograde metamorphic) U–Th–Pb ages in unshielded monazite from the high-pressure paragneisses of the Variscan Ulten Zone (Italy) , 2011 .
[28] P. Renne,et al. Response to the comment by W.H. Schwarz et al. on Joint determination of 40K decay constants and 40 , 2011 .
[29] M. Basei,et al. Tectonothermal evolution and exhumation history of the Paleozoic Proto-Andean Gondwana margin crust: The Famatinian Belt in NW Argentina , 2011 .
[30] H. Massonne,et al. The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure–temperature–time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina) , 2011 .
[31] M. Basei,et al. Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina , 2011 .
[32] C. V. Staal,et al. An Alpine-style Ordovician collision complex in the Sierra de Pie de Palo, Argentina: Record of subduction of Cuyania beneath the Famatina arc , 2011 .
[33] P. Renne,et al. Structural evolution of a composite middle to lower crustal section: The Sierra de Pie de Palo, northwest Argentina , 2011 .
[34] P. Renne,et al. Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology , 2010 .
[35] G. Gehrels,et al. Timing constraints on building an intermediate plutonic arc crustal section: U‐ Pb zircon geochronology of the Sierra Valle Fértil–La Huerta, Famatinian arc, Argentina , 2010 .
[36] D. Morata,et al. Peraluminous Grenvillian TTG in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina: Petrology, geochronology, geochemistry and petrogenetic implications , 2010 .
[37] M. Naipauer,et al. Detrital zircon analysis from the Neoproterozoic-Cambrian sedimentary cover (Cuyania terrane), Sierra de Pie de Palo, Argentina: Evidence of a rift and passive margin system? , 2010 .
[38] U. Ring,et al. No need for lithospheric extension for exhuming (U)HP rocks by normal faulting , 2010, Journal of the Geological Society.
[39] U. Ring,et al. Coeval high‐pressure metamorphism, thrusting, strike‐slip, and extensional shearing in the Tauern Window, Eastern Alps , 2008 .
[40] C. Faccenna,et al. Laboratory experiments of slab break‐off and slab dip reversal: insight into the Alpine Oligocene reorganization , 2008 .
[41] H. Massonne,et al. Dating of zircon and monazite from diamondiferous quartzofeldspathic rocks of the Saxonian Erzgebirge – hints at burial and exhumation velocities , 2007, Mineralogical Magazine.
[42] P. Renne,et al. Cambrian initiation of the Las Pirquitas thrust of the western Sierras Pampeanas, Argentina: Implications for the tectonic evolution of the proto-Andean margin of South America , 2007 .
[43] P. Spadea,et al. Arc–continent collision in the Southern Urals , 2006 .
[44] S. Siegesmund,et al. Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: implications for the Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina) , 2006, Journal of the Geological Society.
[45] R. Pankhurst,et al. Neoproterozoic A‐type magmatism in the Western Sierras Pampeanas (Argentina): evidence for Rodinia break‐up along a proto‐Iapetus rift? , 2006 .
[46] J. Severinghaus,et al. A redetermination of the isotopic abundances of atmospheric Ar , 2006 .
[47] J. Wijbrans,et al. Time markers for the evolution and exhumation history of a Late Palaeozoic paired metamorphic belt in North-Central Chile (34°-35°30′S) , 2005 .
[48] A. Willner. Pressure–Temperature Evolution of a Late Palaeozoic Paired Metamorphic Belt in North–Central Chile (34°–35°30′S) , 2005 .
[49] James A. D. Connolly,et al. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .
[50] C. V. Staal,et al. Age Constraints on the Tectonic Evolution and Provenance of the Pie de Palo Complex, Cuyania Composite Terrane, and the Famatinian Orogeny in the Sierra de Pie de Palo, San Juan, Argentina , 2004 .
[51] V. Ramos. Cuyania, an Exotic Block to Gondwana: Review of a Historical Success and the Present Problems , 2004 .
[52] R. Pankhurst,et al. K-bentonites in the Argentine Precordillera contemporaneous with rhyolite volcanism in the Famatinian Arc , 2004, Journal of the Geological Society.
[53] J. Platt,et al. Franciscan subduction off to a slow start: evidence from high-precision Lu-Hf garnet ages on high grade-blocks , 2004 .
[54] F. Dávila,et al. Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion , 2004 .
[55] M. Thirlwall,et al. Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios , 2004 .
[56] J. Saavedra,et al. Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: tectonic implications , 2004 .
[57] R. Powell,et al. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation , 2003 .
[58] W. A. Thomas,et al. Ordovician accretion of the Argentine Precordillera terrane to Gondwana: a review , 2003 .
[59] R. Powell,et al. Fractionation of bulk rock composition due to porphyroblast growth: effects on eclogite facies mineral equilibria, Pam Peninsula, New Caledonia , 2002 .
[60] J. Saavedra,et al. Involvement of the Argentine Precordillera terrane in the Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de Pie de Palo , 2001 .
[61] K. Mezger,et al. Calibration of the Lutetium-Hafnium Clock , 2001, Science.
[62] Chung-Pai Chang,et al. Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica , 2000 .
[63] F. Neubauer,et al. Deformation-induced resetting of Rb/Sr and 40Ar/39Ar mineral systems in a low-grade, polymetamorphic terrane (Eastern Alps, Austria) , 1999, Journal of the Geological Society.
[64] W. Carlson,et al. Late thermal evolution of Proterozoic rocks in the northeastern Llano Uplift, central Texas , 1999 .
[65] R. Powell,et al. Relating formulations of the thermodynamics of mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and micas , 1999 .
[66] J. Saavedra,et al. Early evolution of the Proto-Andean margin of South America , 1998 .
[67] Roger Powell,et al. An internally consistent thermodynamic data set for phases of petrological interest , 1998 .
[68] Andy Buckley,et al. Rare-earth element determination in minerals by electron-probe microanalysis: application of spectrum synthesis , 1998, Mineralogical Magazine.
[69] Villa,et al. Isotopic closure , 1998 .
[70] W. Carlson,et al. Petrological significance of prograde homogenization of growth zoning in garnet: an example from the Llano Uplift , 1997 .
[71] B. Leake,et al. Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names , 1997, Mineralogical Magazine.
[72] W. A. Thomas,et al. The Argentine Precordillera: A Traveler from the Ouachita Embayment of North American Laurentia , 1996, Science.
[73] R. Astini,et al. The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: A geodynamic model , 1995 .
[74] S. Kelley,et al. High spatial resolution 40Ar 39Ar investigations using an ultra-violet laser probe extraction technique , 1994 .
[75] R. Jamieson,et al. Decompression‐induced growth of albite porphyroblasts, Fleur de Lys Supergroup, western Newfoundland , 1991 .
[76] J. Connolly. Multivariable phase diagrams; an algorithm based on generalized thermodynamics , 1990 .
[77] B. Isacks. Uplift of the Central Andean Plateau and bending of the Bolivian orocline , 1988 .
[78] K. Marti,et al. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .
[79] P. Bayliss. Nomenclature of the trioctahedral chlorites , 1975 .
[80] W. Collins,et al. Laurentian origin of the Cuyania suspect terrane, western Argentina, confirmed by Hf isotopes in zircon , 2019, GSA Bulletin.
[81] R. Pankhurst,et al. The Western Sierras Pampeanas: Protracted Grenville-age history (1330-1030 Ma) of intra-oceanic arcs, subduction-accretion at continental-edge and AMCG intraplate magmatism , 2010 .
[82] U. Klötzli,et al. Timing and rate of granulite facies metamorphism and cooling from multi-mineral chronology on migmatitic gneisses, Sierras de La Huerta and Valle Fértil, NW Argentina , 2010 .
[83] C. R. Amenábar,et al. Nuevos aportes a la palinología, cronología y paleoambiente de la Precordillera Occidental de Argentina: formaciones El Planchón, Codo (Devónico) y El Ratón (Mississippiano) , 2009 .
[84] Carlos W. Rapela,et al. Datación U-Pb SHRIMP de circones detríticos en paranfibolitas neoproterozoicas de las secuencia Difunta Correa (Sierras Pampeanas Occidentales, Argentina) , 2005 .
[85] P. O'Brien. METAMORPHIC ROCKS | PTt-Paths , 2005 .
[86] A. Liechti,et al. Monazite analysis; from sample preparation to microprobe age dating and REE quantification. , 2000 .
[87] L. Snee,et al. Closing the ocean between the Precordillera terrane and Chilenia: Early Devonian ophiolite emplacement and deformation in the southwest Precordillera , 1999 .
[88] S. Willett,et al. Exhumation processes , 1999, Geological Society, London, Special Publications.
[89] W. A. Thomas,et al. Origin and evolution of the Precordillera terrane of western Argentina: A drifted Laurentian orphan , 1999 .
[90] C. Casquet,et al. Datos preliminares sobre el metamorfismo de la Sierra de Pie de Palo, Sierras Pampeanas Occidentales (Argentina) , 1998 .
[91] J. Saavedra,et al. The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin , 1998, Geological Society, London, Special Publications.
[92] R. Astini. Stratigraphical evidence supporting the rifting, drifting and collision of the Laurentian Precordillera terrane of western Argentina , 1998, Geological Society, London, Special Publications.
[93] V. Ramos,et al. Time constraints on the Early Palaeozoic docking of the Precordillera, central Argentina , 1998, Geological Society, London, Special Publications.
[94] S. Kay,et al. A Laurentian? Grenville-age oceanic arc/back-arc terrane in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina , 1998, Geological Society, London, Special Publications.
[95] A. Toselli,et al. Geología del noroeste argentino , 1981 .
[96] I. Villa. 39 Ar- 40 Ar geochronology of mono- and polymetamorphic basement rocks , 2022 .