Evolution of Complexity in the Volvocine Algae: Transitions in Individuality Through Darwin's Eye

Abstract The transition from unicellular to differentiated multicellular organisms constitutes an increase in the level complexity, because previously existing individuals are combined to form a new, higher-level individual. The volvocine algae represent a unique opportunity to study this transition because they diverged relatively recently from unicellular relatives and because extant species display a range of intermediate grades between unicellular and multicellular, with functional specialization of cells. Following the approach Darwin used to understand “organs of extreme perfection” such as the vertebrate eye, this jump in complexity can be reduced to a series of small steps that cumulatively describe a gradual transition between the two levels. We use phylogenetic reconstructions of ancestral character states to trace the evolution of steps involved in this transition in volvocine algae. The history of these characters includes several well-supported instances of multiple origins and reversals. The inferred changes can be understood as components of cooperation–conflict–conflict mediation cycles as predicted by multilevel selection theory. One such cycle may have taken place early in volvocine evolution, leading to the highly integrated colonies seen in extant volvocine algae. A second cycle, in which the defection of somatic cells must be prevented, may still be in progress.

[1]  Christopher I. Smith,et al.  Range expansions in the flightless longhorn cactus beetles, Moneilema gigas and Moneilema armatum, in response to Pleistocene climate changes , 2005, Molecular ecology.

[2]  N. J. Lang ELECTRON MICROSCOPY OF THE VOLVOCACEAE AND ASTREPHOMENACEAE , 1963 .

[3]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[4]  R. Dawkins Climbing Mount Improbable , 1996 .

[5]  R. Michod,et al.  The evolutionary origin of an altruistic gene. , 2006, Molecular biology and evolution.

[6]  Taxonomy of the unicellular green algal genus Vitreochlamys (Volvocales), based on comparative morphology of cultured material , 2001 .

[7]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[8]  J. Griesemer The Units of Evolutionary Transition , 2001 .

[9]  L. Buss,et al.  The evolution of individuality , 1987 .

[10]  R. Michod,et al.  Evolution of individuality during the transition from unicellular to multicellular life , 2007, Proceedings of the National Academy of Sciences.

[11]  Jaa Nylander,et al.  MrModeltest 2.2. Program Distributed by the Author , 2004 .

[12]  D. Queller,et al.  Relatedness and the fraternal major transitions. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[13]  H. Nozaki Morphology and evolution of sexual reproduction in the Volvocaceae (Chlorophyta) , 1996, Journal of Plant Research.

[14]  R. Michod,et al.  Multicellularity and the functional interdependence of motility and molecular transport , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Michod,et al.  The group covariance effect and fitness trade-offs during evolutionary transitions in individuality. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Mike Mesterton-Gibbons,et al.  Genetic and cultural evolution of cooperation , 2004 .

[17]  A. Coleman,et al.  MORPHOLOGY, MOLECULAR PHYLOGENY AND TAXONOMY OF TWO NEW SPECIES OF PLEODORINA (VOLVOCEAE, CHLOROPHYCEAE) 1 , 2006 .

[18]  T. Lien,et al.  SYNCHRONOUS GROWTH OF CHLAMYDOMONAS REINHARDTII (CHLOROPHYCEAE): A REVIEW OF OPTIMAL CONDITIONS 1 , 1979 .

[19]  D. Kirk Volvox: A Search for the Molecular and Genetic Origins of Multicellularity and Cellular Differentiation , 1997 .

[20]  G. Hardin,et al.  The Tragedy of the Commons , 1968, Green Planet Blues.

[21]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[22]  K. Misawa,et al.  Origin and evolution of the colonial volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. , 2000, Molecular phylogenetics and evolution.

[23]  R. Michod Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality , 1999 .

[24]  T. Kuroiwa,et al.  PHYLOGENETIC RELATIONSHIPS WITHIN THE COLONIAL VOLVOCALES (CHLOROPHYTA) INFERRED FROM rbcL GENE SEQUENCE DATA , 1995 .

[25]  A. Zharkikh Estimation of evolutionary distances between nucleotide sequences , 1994, Journal of Molecular Evolution.

[26]  Fredrik Ronquist,et al.  Bayesian Inference of Character Evolution , 2022 .

[27]  H. Nozaki,et al.  REEXAMINATION OF PHYLOGENETIC RELATIONSHIPS WITHIN THE COLONIAL VOLVOCALES (CHLOROPHYTA): AN ANALYSIS OF atpB AND rbcL GENE SEQUENCES , 1999 .

[28]  D. Kirk,et al.  A twelve-step program for evolving multicellularity and a division of labor. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  A. Coleman Phylogenetic analysis of "Volvocacae" for comparative genetic studies. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Takashi Yamada,et al.  Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae). , 2002, Molecular phylogenetics and evolution.

[31]  D. Kirk,et al.  Molecular phylogeny of the volvocine flagellates. , 1992, Molecular biology and evolution.

[32]  N. Larsen,et al.  Phylogenetic relationships of the green algeVolvox carteri deduced from small-subunit ribosomal RNA comparisons , 1989, Journal of Molecular Evolution.

[33]  R E Michod,et al.  Mutation, Multilevel Selection, and the Evolution of Propagule Size during the Origin of Multicellularity , 2001, The American Naturalist.

[34]  L. M. M.-T. Theory of Probability , 1929, Nature.

[35]  Robert M. Miura,et al.  Some mathematical questions in biology : DNA sequence analysis , 1986 .

[36]  Denis Roze,et al.  Cooperation and conflict in the evolution of individuality. IV. Conflict mediation and evolvability in Volvox carteri. , 2003, Bio Systems.

[37]  Richard E. Michod,et al.  On the transfer of fitness from the cell to the multicellular organism , 2006 .

[38]  M. Pagel,et al.  Bayesian estimation of ancestral character states on phylogenies. , 2004, Systematic biology.

[39]  A HYDRODYNAMICS APPROACH TO THE EVOLUTION OF MULTICELLULARITY: FLAGELLAR MOTILITY AND THE EVOLUTION OF GERM-SOMA DIFFERENTIATION IN VOLVOCALEAN GREEN ALGAE , 2005 .

[40]  S. Jeffery Evolution of Protein Molecules , 1979 .

[41]  R E Michod,et al.  Transitions in individuality , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  C. Schlichting,et al.  Origins of differentiation via phenotypic plasticity , 2003, Evolution & development.

[43]  R. Michod,et al.  Life-history evolution and the origin of multicellularity. , 2006, Journal of theoretical biology.

[44]  Annette W. Coleman,et al.  Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation. , 1998 .

[45]  L. Wahl The Division of Labor: Genotypic versus Phenotypic Specialization , 2002, The American Naturalist.

[46]  Richard E. Michod,et al.  Cooperation and Conflict in the Evolution of Individuality. I. Multilevel Selection of the Organism , 1997, The American Naturalist.

[47]  Chrystopher L. Nehaniv Mathematical and Computational Biology: Computational Morphogenesis, Hierarchical Complexity, and Digital Evolution , 1999 .

[48]  R. Michod,et al.  A Hydrodynamics Approach to the Evolution of Multicellularity: Flagellar Motility and Germ‐Soma Differentiation in Volvocalean Green Algae , 2006, The American Naturalist.

[49]  G. Kraepelin J. PICKETT‐HEAPS, Green Algae. Structure, Reproduction and Evolution in Selected Genera. 606 S., 44 Strichzeichnungen, 882 Mikroaufnahmen. Sunderland, Mass. 1975. Sinauer Associates, Inc. Pbl./W. H. Freeman & Co. $ 23.40 , 1977 .

[50]  Z. Yang,et al.  Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.

[51]  A. Schmitz,et al.  Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. , 2005, Systematic biology.

[52]  Fitness and Complexity in Volvocalean Green Algae , 2003 .

[53]  G. Bell,et al.  Soma and germ: an experimental approach using Volvox , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  J. Pickett-Heaps Green algae: Structure, reproduction, and evolution in selected genera , 1975 .

[55]  T. Kuroiwa,et al.  PHYLOGENETIC ANALYSIS OF YAMAGISHLELLA AND PLATYDORINA (VOLVOCACEAE, CHLOROPHYTA) BASED ON rbcL GENE SEQUENCES 1 , 1997 .

[56]  D. Roze,et al.  Cooperation and conflict in the evolution of multicellularity , 2001, Heredity.

[57]  T. Kuroiwa,et al.  Phylogeny of the quadriflagellate Volvocales (Chlorophyceae) based on chloroplast multigene sequences. , 2003, Molecular phylogenetics and evolution.

[58]  V. Koufopanou,et al.  The Evolution of Soma in the Volvocales , 1994, The American Naturalist.

[59]  R E Michod,et al.  Cooperation and conflict in the evolution of individuality. II. Conflict mediation , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[60]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[61]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[62]  L. Krienitz,et al.  Morphology and phylogeny of Eudorina minodii (Chodat) Nozaki et Krienitz, comb. nov. (Volvocales, Chlorophyta) from Germany , 2001 .

[63]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[64]  Jeremy M. Brown,et al.  The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. , 2007, Systematic biology.

[65]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[66]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[67]  H. Akaike A new look at the statistical model identification , 1974 .