A digital waveguide-based approach for Clavinet modeling and synthesis

The Clavinet is an electromechanical musical instrument produced in the mid-twentieth century. As is the case for other vintage instruments, it is subject to aging and requires great effort to be maintained or restored. This paper reports analyses conducted on a Hohner Clavinet D6 and proposes a computational model to faithfully reproduce the Clavinet sound in real time, from tone generation to the emulation of the electronic components. The string excitation signal model is physically inspired and represents a cheap solution in terms of both computational resources and especially memory requirements (compared, e.g., to sample playback systems). Pickups and amplifier models have been implemented which enhance the natural character of the sound with respect to previous work. A model has been implemented on a real-time software platform, Pure Data, capable of a 10-voice polyphony with low latency on an embedded device. Finally, subjective listening tests conducted using the current model are compared to previous tests showing slightly improved results.

[1]  F. Piazza,et al.  Networked Beagleboards for wireless music applications , 2012, 2012 5th European DSP Education and Research Conference (EDERC).

[2]  Stefania Serafin,et al.  Proceedings of the International Computer Music Conference , 2007 .

[3]  Harvey Fletcher,et al.  Quality of Piano Tones , 1962 .

[4]  Vesa Välimäki,et al.  A Parametric Piano Synthesizer , 2008, Computer Music Journal.

[5]  Smith,et al.  Physical audio signal processing : for virtual musical instruments and audio effects , 2010 .

[6]  Thomas Hélie,et al.  Volterra Series and State Transformation for Real-Time Simulations of Audio Circuits Including Saturations: Application to the Moog Ladder Filter , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[7]  Unto K. Laine,et al.  Splitting the unit delay [FIR/all pass filters design] , 1996, IEEE Signal Process. Mag..

[8]  Matti Karjalainen,et al.  Acoustical analysis and model-based sound synthesis of the kantele. , 2002, The Journal of the Acoustical Society of America.

[9]  David T. Yeh,et al.  Digital implementation of musical distortion circuits by analysis and simulation , 2009 .

[10]  Stefan Bilbao Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics , 2009 .

[11]  Matti Karjalainen,et al.  Digital Waveguides versus Finite Difference Structures: Equivalence and Mixed Modeling , 2004, EURASIP J. Adv. Signal Process..

[12]  Vesa Välimäki,et al.  Toward Next-Generation Digital Keyboard Instruments , 2007, IEEE Signal Processing Magazine.

[13]  Richard Kronland-Martinet,et al.  The simulation of piano string vibration: from physical models to finite difference schemes and digital waveguides. , 2003, The Journal of the Acoustical Society of America.

[14]  Augusto Sarti,et al.  Virtual Analog Modeling in the Wave-Digital Domain , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[15]  László Sujbert,et al.  Generation of longitudinal vibrations in piano strings: from physics to sound synthesis. , 2005, The Journal of the Acoustical Society of America.

[16]  Andrew Horner,et al.  Perceptual Wavetable Matching for Synthesis of Musical Instrument Tones , 2001, ICMC.

[17]  Eli Brandt,et al.  Hard Sync Without Aliasing , 2001, ICMC.

[18]  Vesa Välimäki,et al.  Acoustics and modeling of pickups , 2012 .

[19]  Vesa Välimäki,et al.  Analysis and modeling of piano sustain-pedal effects. , 2007, The Journal of the Acoustical Society of America.

[20]  Vesa Välimäki,et al.  A pickup model for the Clavinet , 2012 .

[21]  Matti Karjalainen,et al.  Audibility of the timbral effects of inharmonicity in stringed instrument tones , 2001 .

[22]  Vesa Välimäki,et al.  Parametric Electric Guitar Synthesis , 2011, Computer Music Journal.

[23]  Stefan Bilbao,et al.  Time Domain Emulation of the Clavinet , 2010 .

[24]  Marco Civolani,et al.  Modeling of the EMS VCS3 Voltage-Controlled Filter as a Nonlinear Filter Network , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[25]  Jukka Rauhala THE BEATING EQUALIZER AND ITS APPLICATION TO THE SYNTHESIS AND MODIFICATION OF PIANO TONES , 2007 .

[26]  Rudy Lauwereins,et al.  Measurement of guitar string coupling , 2002, ICMC.

[27]  Unto K. Laine,et al.  Splitting the Unit Delay - Tools for fractional delay filter design , 1996 .

[28]  Vesa Välimäki,et al.  Robust, Efficient Design of Allpass Filters for Dispersive String Sound Synthesis , 2010, IEEE Signal Processing Letters.

[29]  Vesa Välimäki,et al.  Analysis and Synthesis of Coupled Vibrating Strings Using a Hybrid Modal-Waveguide Synthesis Model , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[30]  Christophe d'Alessandro On the dynamics of the clavichord: from tangent motion to sound. , 2010, The Journal of the Acoustical Society of America.

[31]  Vesa Välimäki,et al.  Real-time emulation of the Clavinet , 2011, ICMC.

[32]  Vesa Välimäki,et al.  Fast automatic inharmonicity estimation algorithm. , 2007, The Journal of the Acoustical Society of America.

[33]  S Puckette Miller,et al.  Pure Data : another integrated computer music environment , 1996 .

[34]  A. Chaigne,et al.  Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods , 1994 .

[35]  G. Lemarquand,et al.  Calculation Method of Permanent-Magnet Pickups for Electric Guitars , 2007, IEEE Transactions on Magnetics.

[36]  Bob L. Sturm,et al.  Proceedings of the International Computer Music Conference , 2011 .

[37]  Sang-Bock Cho,et al.  Synthesis of the Dan Trahn Based on a Parameter Extraction System , 2010 .

[38]  Cumhur Erkut,et al.  Commuted Waveguide Synthesis of the Clavichord , 2003, Computer Music Journal.

[39]  Vesa Välimäki,et al.  A Subjective Validation Method for Musical Instrument Emulation , 2011 .

[40]  Vesa Välimäki,et al.  Physical Modeling of Plucked String Instruments with Application to Real-Time Sound Synthesis , 1996 .

[41]  Henri Penttinen,et al.  Cable Matters: Instrument Cables Affect the Frequency Response of Electric Guitars , 2011 .

[42]  Julius O. Smith,et al.  Extensions of the Karplus-Strong Plucked-String Algorithm , 1983 .

[43]  V. Valimaki,et al.  Robust loss filter design for digital waveguide synthesis of string tones , 2003, IEEE Signal Processing Letters.

[44]  Balázs Bank Physics-Based Sound Synthesis of the Piano , 2000 .

[45]  Thomas R. Moore,et al.  Modeling the magnetic pickup of an electric guitar , 2009 .

[46]  Hanna Järveläinen,et al.  Perceptual Tolerances for Decay Parameters in Plucked String Synthesis , 2001 .

[47]  Cumhur Erkut,et al.  Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model , 2004, EURASIP J. Adv. Signal Process..

[48]  Lawrence R. Rabiner,et al.  On the use of autocorrelation analysis for pitch detection , 1977 .

[49]  Sanjit K. Mitra,et al.  Tunable digital frequency response equalization filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[50]  M. Leman,et al.  Model-based sound synthesis of the guqin. , 2006, The Journal of the Acoustical Society of America.

[51]  Mohamad Adnan Al-Alaoui,et al.  Novel digital integrator and differentiator , 1993 .

[52]  Julius O. Smith,et al.  A Simplified Approach to Modeling Dispersion Caused by Stiffness in Strings and Plates , 1994, ICMC.

[53]  M. Karjalainen,et al.  Discrete-time modelling of musical instruments , 2005 .

[54]  Andrew Horner,et al.  Evaluation of Weighted Principal-Component Analysis Matching for Wavetable Synthesis , 2007 .

[55]  Stefan Bilbao,et al.  Numerical Sound Synthesis , 2009 .

[56]  Federico Fontana,et al.  A Modal-Based Real-Time Piano Synthesizer , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[57]  W. G. Horner,et al.  A new method of solving numerical equations of all orders, by continuous approximation , 1815 .

[58]  Vesa Välimäki,et al.  Audibility of Initial Pitch Glides in String Instrument Sounds , 2001, ICMC.