Large‐Area Monolayer MoS2 for Flexible Low‐Power RF Nanoelectronics in the GHz Regime

Flexible synthesized MoS2 transistors are advanced to perform at GHz speeds. An intrinsic cutoff frequency of 5.6 GHz is achieved and analog circuits are realized. Devices are mechanically robust for 10,000 bending cycles.

[1]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[2]  Frank Schwierz,et al.  Graphene Transistors: Status, Prospects, and Problems , 2013, Proceedings of the IEEE.

[3]  Daniel Wolverson,et al.  Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 , 2013 .

[4]  Kun-Ming Chen,et al.  Channel Thickness Effect on High-Frequency Performance of Poly-Si Thin-Film Transistors , 2013, IEEE Electron Device Letters.

[5]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[6]  Amritesh Rai,et al.  Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation. , 2015, Nano letters.

[7]  Weidong Zhou,et al.  Fast flexible electronics with strained silicon nanomembranes , 2013, Scientific Reports.

[8]  S. Banerjee,et al.  Radio Frequency Transistors and Circuits Based on CVD MoS2. , 2015, Nano letters.

[9]  Sohail Ahmed,et al.  Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors , 2017, Nano-Micro Letters.

[10]  Yusuf Leblebici,et al.  MoS2 transistors operating at gigahertz frequencies. , 2014, Nano letters.

[11]  Gerhard Tröster,et al.  Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. , 2013, ACS nano.

[12]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[13]  Deji Akinwande,et al.  On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals , 2014 .

[14]  Mengwei Si,et al.  Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. , 2013, Nano letters.

[15]  Jongho Lee,et al.  Inductively heated synthesized graphene with record transistor mobility on oxidized silicon substrates at room temperature , 2013 .

[16]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[17]  Gerard Ghibaudo,et al.  New method for the extraction of MOSFET parameters , 1988 .

[18]  D. Akinwande,et al.  Three-Gigahertz Graphene Frequency Doubler on Quartz Operating Beyond the Transit Frequency , 2012, IEEE Transactions on Nanotechnology.

[19]  Heung Cho Ko,et al.  Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. , 2013, Small.

[20]  K. Shepard,et al.  Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. , 2013, Nano letters.

[21]  JianJang Huang,et al.  Demonstration of radio-frequency response of amorphous IGZO thin film transistors on the glass substrate , 2015 .

[22]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[23]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[24]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[25]  P. Ajayan,et al.  Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors , 2014 .

[26]  J. Kong,et al.  Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition , 2012, 2012 International Electron Devices Meeting.

[27]  J. M. Baik,et al.  Band-gap transition induced by interlayer van der Waals interaction in MoS 2 , 2011 .

[28]  M. Dubey,et al.  Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene , 2015, Nanotechnology.

[29]  Jongho Lee,et al.  25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. , 2013, ACS nano.

[30]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[31]  Hao Wu,et al.  Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics , 2014, Nature Communications.

[32]  Sanjay Krishna,et al.  Self-aligned, Extremely High Frequency Iii−v Metal-oxide- Semiconductor Field-effect Transistors on Rigid and Flexible Substrates , 2022 .

[33]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[34]  Lei Liao,et al.  Interface Engineering for High‐Performance Top‐Gated MoS2 Field‐Effect Transistors , 2014, Advanced materials.

[35]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[36]  Gyoujin Cho,et al.  Electrical Characteristics of GaAs Nanowire-Based MESFETs on Flexible Plastics , 2011, IEEE Transactions on Electron Devices.

[37]  P. Ajayan,et al.  Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2 , 2014 .

[38]  G. Fiori,et al.  Velocity saturation in few-layer MoS2 transistor , 2013 .

[39]  A. M. van der Zande,et al.  Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. , 2012, Nano letters.