Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome?

Compositional bias of yeast chromosomes was analysed using detrended DNA walks. Unlike eubacterial chromosomes, the yeast chromosomes did not show the specific asymmetry correlated with origin and terminus of replication. It is probably a result of a relative excess of autonomously replicating sequences (ARS) and of random choice of these sequences in each replication cycle. Nevertheless, the last ARS from both ends of chromosomes are responsible for unidirectional replication of subtelomeric sequences with pre-established leading/lagging roles of DNA strands. In these sequences a specific asymmetry is observed, resembling the asymmetry introduced by replication-associated mutational pressure into eubacterial chromosomes.

[1]  B. Tye,et al.  Autonomously replicating sequences in Saccharomyces cerevisiae. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. A. Kreutzer,et al.  Oxidized, deaminated cytosines are a source of C --> T transitions in vivo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Cebrat,et al.  How does replication-associated mutational pressure influence amino acid composition of proteins? , 1999, Genome research.

[4]  Gary J. Olsen,et al.  Archaeal Genomics : An Overview Minireview , 1997 .

[5]  DNA replication: one strand may be more equal. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Grigoriev Strand-specific compositional asymmetries in double-stranded DNA viruses. , 1999, Virus research.

[7]  Temple F. Smith,et al.  Patterns of Genome Organization in Bacteria , 1998, Science.

[8]  E. Chargaff,et al.  On the denaturation of deoxyribonucleic acid. , 1966, Biochimica et biophysica acta.

[9]  R Zhang,et al.  Analysis of distribution of bases in the coding sequences by a diagrammatic technique. , 1991, Nucleic acids research.

[10]  J. Lobry,et al.  Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. , 1999, Gene.

[11]  C. Sensen,et al.  Complete DNA sequence of yeast chromosome XI , 1994, Nature.

[12]  V. Zakian,et al.  Sequencing of Saccharomyces telomeres cloned using T4 DNA polymerase reveals two domains , 1990, Molecular and cellular biology.

[13]  S. Cebrat,et al.  Asymmetry of coding versus noncoding strand in coding sequences of different genomes. , 1997, Microbial & comparative genomics.

[14]  K. H. Wolfe,et al.  Eukaryote genome duplication - where's the evidence? , 1998, Current opinion in genetics & development.

[15]  E. Chargaff,et al.  On the denaturation of deoxyribonucleic acid. II. Effects of concentration. , 1967, Biochimica et biophysica acta.

[16]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[17]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[18]  T. Lindahl Instability and decay of the primary structure of DNA , 1993, Nature.

[19]  G. Obe Advances in Mutagenesis Research , 2011, Advances in Mutagenesis Research.

[20]  Chung-I Wu,et al.  Inequality in mutation rates of the two strands of DNA , 1987, Nature.

[21]  Jack W. Szostak,et al.  DNA sequences of telomeres maintained in yeast , 1984, Nature.

[22]  C. Newlon,et al.  A replication map of a 61-kb circular derivative of Saccharomyces cerevisiae chromosome III. , 1992, Molecular biology of the cell.

[23]  K. Marians Prokaryotic DNA replication. , 1992, Annual review of biochemistry.

[24]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[25]  J. Lobry,et al.  Origin of Replication of Mycoplasma genitalium , 1996, Science.

[26]  E J Louis,et al.  The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. , 1990, Genetics.

[27]  Hans-Werner Mewes,et al.  the yeast genome , 1997 .

[28]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[29]  H. Ochman,et al.  Asymmetries Generated by Transcription-Coupled Repair in Enterobacterial Genes , 1996, Science.

[30]  S. Cebrat,et al.  The effect of DNA phase structure on DNA walks , 1998 .

[31]  R. Sinden,et al.  Differential DNA secondary structure-mediated deletion mutation in the leading and lagging strands , 1995, Journal of bacteriology.

[32]  J. Filipski Evolution of DNA Sequence Contributions of Mutational Bias and Selection to the Origin of Chromosomal Compartments , 1990 .

[33]  S. Cebrat,et al.  Asymmetry of nucleotide composition of prokaryotic chromosomes , 1999 .

[34]  P. Hanawalt Heterogeneity of DNA repair at the gene level. , 1991, Mutation research.

[35]  C. Newlon,et al.  The effect on chromosome stability of deleting replication origins , 1993, Molecular and cellular biology.

[36]  B. Stillman,et al.  Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro , 1994, Nature.

[37]  H. Echols,et al.  Fidelity mechanisms in DNA replication. , 1991, Annual review of biochemistry.

[38]  Paweł Mackiewicz,et al.  Effect of replication on the third base of codons , 1999 .

[39]  P. Sharp,et al.  Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. , 1999, Nucleic acids research.

[40]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[41]  C. Newlon,et al.  The ARS consensus sequence is required for chromosomal origin function in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[42]  B. Wilkins Organization and plasticity of enterobacterial genomes. , 1988, Society for Applied Bacteriology symposium series.

[43]  J. Wang The base contents of A, C, G or U for the three codon positions and the total coding sequences show positive correlation. , 1998, Journal of biomolecular structure & dynamics.

[44]  T. Kunkel Biological asymmetries and the fidelity of eukaryotic DNA replication , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[45]  S. Karlin,et al.  Comparative DNA analysis across diverse genomes. , 1998, Annual review of genetics.

[46]  F. Sanger,et al.  Features of Bacteriophage λ: Analysis of the Complete Nucleotide Sequence , 1983 .

[47]  R. Schaaper,et al.  Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A Grigoriev,et al.  Analyzing genomes with cumulative skew diagrams. , 1998, Nucleic acids research.

[49]  K. H. Wolfe,et al.  Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi , 1998, Yeast.

[50]  P. Slonimski,et al.  Two yeast chromosomes are related by a fossil duplication of their centromeric regions. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[51]  A. Bhagwat,et al.  Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Kunkel,et al.  A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. , 1990, Biochemistry.

[53]  A. Danchin,et al.  Universal replication biases in bacteria , 1999, Molecular microbiology.

[54]  R. Fuchs,et al.  Greater susceptibility to mutations in lagging strand of DNA replication in Escherichia coli than in leading strand , 1993 .

[55]  S. Salzberg,et al.  Skewed oligomers and origins of replication. , 1998, Gene.

[56]  S. Cebrat,et al.  Origin and properties of non-coding ORFs in the yeast genome. , 1999, Nucleic acids research.

[57]  S. Karlin,et al.  Dinucleotide relative abundance extremes: a genomic signature. , 1995, Trends in genetics : TIG.

[58]  C. Newlon,et al.  Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins , 1991, Molecular and cellular biology.

[59]  H. Ochman,et al.  Strand asymmetries in DNA evolution. , 1997, Trends in genetics : TIG.

[60]  Gary J Olsen,et al.  Archaeal Genomics: An Overview , 1997, Cell.

[61]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[62]  K. H. Wolfe,et al.  Base Composition Skews, Replication Orientation, and Gene Orientation in 12 Prokaryote Genomes , 1998, Journal of Molecular Evolution.

[63]  A. Goffeau,et al.  Yeast genome , 1995 .

[64]  R. Britten Precise sequence complementarity between yeast chromosome ends and two classes of just-subtelomeric sequences. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. Karlin,et al.  Strand compositional asymmetry in bacterial and large viral genomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J O McInerney,et al.  Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[67]  H Philippe,et al.  Identification of putative chromosomal origins of replication in Archaea , 1999, Molecular microbiology.

[68]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[69]  André Goffeau,et al.  The yeast genome directory. , 1997, Nature.

[70]  K. H. Wolfe,et al.  Extent of genomic rearrangement after genome duplication in yeast. , 1998, Proceedings of the National Academy of Sciences of the United States of America.