The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state).

[1]  W. Lubitz,et al.  Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. , 2010, Journal of the American Chemical Society.

[2]  O. Lenz,et al.  H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  W. Lubitz,et al.  Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  M. Pandelia [NiFe] hydrogenases from Desulfovibrio vulgaris Miyazaki F and Aquifex aeolicus studied by FTIR, EPR and electrochemical techniques: Redox intermediates, O2/CO sensitivity and light-induced effects , 2010 .

[5]  P. Matias,et al.  The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidised, "as-isolated" state. , 2010, Journal of molecular biology.

[6]  W. Lubitz,et al.  Comparison of the membrane-bound [NiFe] hydrogenases from R. eutropha H16 and D. vulgaris Miyazaki F in the oxidized ready state by pulsed EPR. , 2010, Physical chemistry chemical physics : PCCP.

[7]  W. Lubitz,et al.  [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. , 2009, Dalton transactions.

[8]  S. Shima,et al.  The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. , 2009, Angewandte Chemie.

[9]  W. Lubitz,et al.  Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: the Ni-SIr state and its light sensitivity , 2009, JBIC Journal of Biological Inorganic Chemistry.

[10]  Anne Volbeda,et al.  Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. , 2009, Journal of the American Chemical Society.

[11]  O. Lenz,et al.  Spectroscopic Insights into the Oxygen-tolerant Membrane-associated [NiFe] Hydrogenase of Ralstonia eutropha H16* , 2009, The Journal of Biological Chemistry.

[12]  P. Lindblad,et al.  Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120 , 2009, BMC Microbiology.

[13]  K. Medzihradszky,et al.  Electron‐transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS , 2009, The FEBS journal.

[14]  M. Field,et al.  A QM/MM study of proton transport pathways in a [NiFe] hydrogenase , 2008, Proteins.

[15]  A. Volbeda,et al.  Experimental approaches to kinetics of gas diffusion in hydrogenase , 2008, Proceedings of the National Academy of Sciences.

[16]  W. Lubitz,et al.  Purification, crystallization and preliminary X-ray analysis of the membrane-bound [NiFe] hydrogenase from Allochromatium vinosum. , 2008, Acta Crystallographica. Section F : Structural Biology and Crystallization Communications.

[17]  S. Shima,et al.  The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site , 2008, Science.

[18]  C. Soares,et al.  Proton pathways in a [NiFe]‐hydrogenase: A theoretical study , 2008, Proteins.

[19]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[20]  Yvain Nicolet,et al.  Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. , 2007, Chemical reviews.

[21]  W. Lubitz,et al.  [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. , 2007, Chemical reviews.

[22]  W. Lubitz,et al.  Nickel Iron Hydrogenases , 2007 .

[23]  Z. Chen,et al.  Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module , 2006, JBIC Journal of Biological Inorganic Chemistry.

[24]  W. Lubitz,et al.  Rapid and reversible reactions of [NiFe]-hydrogenases with sulfide. , 2006, Journal of the American Chemical Society.

[25]  C. Vonrhein,et al.  The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. , 2006, Journal of molecular biology.

[26]  W. Lubitz,et al.  Hydrogen bonding affects the [NiFe] active site of Desulfovibrio vulgaris Miyazaki F hydrogenase: a hyperfine sublevel correlation spectroscopy and density functional theory study. , 2006, The journal of physical chemistry. B.

[27]  O. Lenz,et al.  [NiFe]-Hydrogenases of Ralstonia eutropha H16: Modular Enzymes for Oxygen-Tolerant Biological Hydrogen Oxidation , 2006, Journal of Molecular Microbiology and Biotechnology.

[28]  H. Ogata,et al.  Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. , 2006, Biochemistry.

[29]  C. Sonntag Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective , 2006 .

[30]  A. Gloter,et al.  A Membrane-bound Multienzyme, Hydrogen-oxidizing, and Sulfur-reducing Complex from the Hyperthermophilic Bacterium Aquifex aeolicus* , 2005, Journal of Biological Chemistry.

[31]  H. Ogata,et al.  Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state. , 2005, Structure.

[32]  Uwe Bergmann,et al.  X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Volbeda,et al.  Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases , 2005, JBIC Journal of Biological Inorganic Chemistry.

[34]  F. Neese,et al.  EPR experiments to elucidate the structure of the ready and unready states of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F. , 2005, Biochemical Society transactions.

[35]  Fei Long,et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. , 2004, Acta crystallographica. Section D, Biological crystallography.

[36]  F. Armstrong,et al.  Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states. , 2004, Journal of the American Chemical Society.

[37]  A. L. Lacey,et al.  The activation of the [NiFe]-hydrogenase from Allochromatium vinosum. An infrared spectro-electrochemical study , 2004, JBIC Journal of Biological Inorganic Chemistry.

[38]  V. Fernández,et al.  A Glutamate Is the Essential Proton Transfer Gate during the Catalytic Cycle of the [NiFe] Hydrogenase* , 2004, Journal of Biological Chemistry.

[39]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[40]  B. Guigliarelli,et al.  [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function, and phylogenetics , 2003, Extremophiles.

[41]  N. Yasuoka,et al.  Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. , 2002, Journal of the American Chemical Society.

[42]  W. Lubitz,et al.  Orientation-selected ENDOR of the active center in Chromatium vinosum [NiFe] hydrogenase in the oxidized "ready" state , 1999, JBIC Journal of Biological Inorganic Chemistry.

[43]  N. Yasuoka,et al.  Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution. , 1999, Structure.

[44]  X Vernede,et al.  The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. , 1999, Structure.

[45]  Y. Higuchi,et al.  Liberation of hydrogen sulfide during the catalytic action of Desulfovibrio hydrogenase under the atmosphere of hydrogen. , 1999, Biochemical and biophysical research communications.

[46]  S. Albracht,et al.  Carbon Monoxide and Cyanide as Intrinsic Ligands to Iron in the Active Site of [NiFe]-Hydrogenases , 1999, The Journal of Biological Chemistry.

[47]  J. Fontecilla-Camps,et al.  Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. , 1999, Structure.

[48]  B J Lemon,et al.  X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. , 1998, Science.

[49]  N. Yasuoka,et al.  Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. , 1997, Structure.

[50]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[51]  M. Field,et al.  Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics , 1997, Nature Structural Biology.

[52]  R. A. Scott,et al.  Structure of the Ni sites in hydrogenases by X-ray absorption spectroscopy. Species variation and the effects of redox poise , 1996 .

[53]  E. Duin,et al.  Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum. , 1995, Biochemistry.

[54]  Michel Frey,et al.  Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas , 1995, Nature.

[55]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[56]  E. Duin,et al.  Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum. , 1994, Biochemistry.

[57]  E. Duin,et al.  Further characterization of the spin coupling observed in oxidized hydrogenase from Chromatium vinosum. A Mössbauer and multifrequency EPR study. , 1994, Biochemistry.

[58]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[59]  H. D. Peck,et al.  Carboxy‐terminal processing of the large subunit of [NiFe] hydrogenases , 1993, FEBS letters.

[60]  S. Albracht,et al.  Distinct redox behaviour of prosthetic groups in ready and unready hydrogenase from Chromatium vinosum. , 1992, Biochimica et biophysica acta.

[61]  S. Albracht,et al.  Effect of 17O2 and 13CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum. , 1990, Biochimica et biophysica acta.

[62]  M. Teixeira,et al.  Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mössbauer and EPR characterization of the metal centers. , 1989, The Journal of biological chemistry.

[63]  S. Albracht,et al.  Destruction and reconstitution of the activity of hydrogenase from Chromatium vinosum , 1985 .

[64]  T. Yagi Spectral and kinetic abnormality during the reduction of cytochrome c3 catalyzed by hydrogenase with hydrogen. , 1984, Biochimica et biophysica acta.

[65]  S. Albracht,et al.  EPR Spectrum at 4, 9 and 35 GHz of hydrogenase from Chromatium vinosum. Direct evidence for spin-spin interaction between Ni(III) and the ironsulphur cluster , 1984 .

[66]  E. C. Slater,et al.  Magnetic interaction of nickel(III) and the iron-sulphur cluster in hydrogenase from Chromatium vinosum , 1983 .

[67]  Petra Kellers Strukturelle und funktionelle Charakterisierung der [NiFe]-Hydrogenase aus Allochromatium vinosum , 2008 .

[68]  W. Lubitz,et al.  A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F , 2005, JBIC Journal of Biological Inorganic Chemistry.

[69]  Barry Honig,et al.  GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. , 2003, Methods in enzymology.

[70]  P. Afonine,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[71]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[72]  S. Albracht,et al.  UvA-DARE ( Digital Academic Repository ) Nickel hydrogenases : in search for the active site , 2002 .

[73]  C. Soares,et al.  [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c3 , 2000, JBIC Journal of Biological Inorganic Chemistry.

[74]  R. Cammack,et al.  The redox properties of the iron-sulphur cluster in hydrogenase from Chromatium vinosum, strain D. , 1986, Biochimie.