Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides.

A screen for genes required in Drosophila eye development identified an UNC-104/Kif1 related kinesin-3 microtubule motor. Analysis of mutants suggested that Drosophila Unc-104 has neuronal functions that are distinct from those of the classic anterograde axonal motor, kinesin-1. In particular, unc-104 mutations did not cause the distal paralysis and focal axonal swellings characteristic of kinesin-1 (Khc) mutations. However, like Khc mutations, unc-104 mutations caused motoneuron terminal atrophy. The distributions and transport behaviors of green fluorescent protein-tagged organelles in motor axons indicate that Unc-104 is a major contributor to the anterograde fast transport of neuropeptide-filled vesicles, that it also contributes to anterograde transport of synaptotagmin-bearing vesicles, and that it contributes little or nothing to anterograde transport of mitochondria, which are transported primarily by Khc. Remarkably, unc-104 mutations inhibited retrograde runs by neurosecretory vesicles but not by the other two organelles. This suggests that Unc-104, a member of an anterograde kinesin subfamily, contributes to an organelle-specific dynein-driven retrograde transport mechanism.

[1]  D. Dickman,et al.  A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport , 2007, Nature Neuroscience.

[2]  E. Holzbaur,et al.  Axonal transport and neurodegenerative disease. , 2006, Biochimica et biophysica acta.

[3]  Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors , 2006, The Journal of cell biology.

[4]  L. Goldstein,et al.  The Genetics of Axonal Transport and Axonal Transport Disorders , 2006, PLoS genetics.

[5]  G. Steinberg,et al.  A dynein loading zone for retrograde endosome motility at microtubule plus‐ends , 2006, The EMBO journal.

[6]  C. Lively,et al.  Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. , 2006, Molecular biology of the cell.

[7]  Sir William Dunn A “ Holistic ” Kinesin Phylogeny Reveals New Kinesin Families and Predicts Protein Functions , 2006 .

[8]  W. Saxton,et al.  APLIP1, a Kinesin Binding JIP-1/JNK Scaffold Protein, Influences the Axonal Transport of Both Vesicles and Mitochondria in Drosophila , 2005, Current Biology.

[9]  Nobutaka Hirokawa,et al.  Analysis of the kinesin superfamily: insights into structure and function. , 2005, Trends in cell biology.

[10]  Steven P. Gross,et al.  Molecular Motors: Strategies to Get Along , 2004, Current Biology.

[11]  Ronald D Vale,et al.  The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. , 2004, Molecular biology of the cell.

[12]  P. Hollenbeck,et al.  Nerve Growth Factor Signaling Regulates Motility and Docking of Axonal Mitochondria , 2004, Current Biology.

[13]  C. Schwartz,et al.  Dense Core Vesicle Dynamics in Caenorhabditis elegans Neurons and the Role of Kinesin UNC‐104 , 2004, Traffic.

[14]  E. Holzbaur,et al.  A Direct Interaction between Cytoplasmic Dynein and Kinesin I May Coordinate Motor Activity* , 2004, Journal of Biological Chemistry.

[15]  M. Nonet,et al.  Mutations in Caenorhabditis elegans Cytoplasmic Dynein Components Reveal Specificity of Neuronal Retrograde Cargo , 2004, The Journal of Neuroscience.

[16]  B. Schnapp,et al.  Trafficking of signaling modules by kinesin motors , 2003, Journal of Cell Science.

[17]  B. Dickson,et al.  Flamingo Regulates R8 Axon-Axon and Axon-Target Interactions in the Drosophila Visual System , 2003, Current Biology.

[18]  Eunjoon Kim,et al.  Characterization of the Movement of the Kinesin Motor KIF1A in Living Cultured Neurons* 210 , 2003, The Journal of Biological Chemistry.

[19]  M. Pericak-Vance,et al.  A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). , 2002, American journal of human genetics.

[20]  N. Hirokawa,et al.  Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Ronald D Vale,et al.  Conversion of Unc104/KIF1A Kinesin into a Processive Motor After Dimerization , 2002, Science.

[22]  W. Saxton,et al.  Posterior Localization of Dynein and Dorsal-Ventral Axis Formation Depend on Kinesin in Drosophila Oocytes , 2002, Current Biology.

[23]  Kendal Broadie,et al.  Living synaptic vesicle marker: Synaptotagmin‐GFP , 2002, Genesis.

[24]  G. Steinberg,et al.  A balance of KIF1A‐like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis , 2002, The EMBO journal.

[25]  R. Vale,et al.  Role of Phosphatidylinositol(4,5)bisphosphate Organization in Membrane Transport by the Unc104 Kinesin Motor , 2002, Cell.

[26]  S. Rao,et al.  Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. , 2001, Journal of neurobiology.

[27]  K. Broadie,et al.  Drosophila CAPS Is an Essential Gene that Regulates Dense-Core Vesicle Release and Synaptic Vesicle Fusion , 2001, Neuron.

[28]  J. Scholey,et al.  Direct Visualization of the Movement of the Monomeric Axonal Transport Motor UNC-104 along Neuronal Processes in LivingCaenorhabditis elegans , 2001, The Journal of Neuroscience.

[29]  N. Hirokawa,et al.  Charcot-Marie-Tooth Disease Type 2A Caused by Mutation in a Microtubule Motor KIF1Bβ , 2001, Cell.

[30]  N. Hirokawa,et al.  Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. , 2001, Cell.

[31]  L. Goldstein,et al.  Flying through the Drosophila Cytoskeletal Genome , 2000, The Journal of cell biology.

[32]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[33]  B. Dickson,et al.  Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. , 2000, Development.

[34]  W. Saxton,et al.  Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. , 1999, Molecular biology of the cell.

[35]  D. Rose,et al.  Lethal Kinesin Mutations Reveal Amino Acids Important for ATPase Activation and Structural Coupling* , 1999, The Journal of Biological Chemistry.

[36]  L. Goldstein,et al.  Drosophila roadblock and Chlamydomonas Lc7 , 1999, The Journal of cell biology.

[37]  N. Hirokawa,et al.  A processive single-headed motor: kinesin superfamily protein KIF1A. , 1999, Science.

[38]  L. Goldstein,et al.  Kinesin Light Chains Are Essential for Axonal Transport in Drosophila , 1998, The Journal of cell biology.

[39]  N. Hirokawa,et al.  Defect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death in KIF1A Motor Protein–deficient Mice , 1998, The Journal of cell biology.

[40]  W. Saxton,et al.  Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. , 1996, Genetics.

[41]  N. Hirokawa,et al.  The neuron-specific kinesin superfamily protein KIF1A is a uniqye monomeric motor for anterograde axonal transport of synaptic vesicle precursors , 1995, Cell.

[42]  N. Hirokawa,et al.  KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria , 1994, Cell.

[43]  S. Benzer,et al.  Paralysis and early death in cysteine string protein mutants of Drosophila. , 1994, Science.

[44]  I. Gibbons,et al.  A family of dynein genes in Drosophila melanogaster. , 1994, Molecular biology of the cell.

[45]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[46]  V. Budnik,et al.  Ultrastructure of neuromuscular junctions in Drosophila: comparison of wild type and mutants with increased excitability. , 1993, Journal of neurobiology.

[47]  J. Littleton,et al.  Expression of synaptotagmin in Drosophila reveals transport and localization of synaptic vesicles to the synapse. , 1993, Development.

[48]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[49]  D. Hall,et al.  Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans , 1991, Cell.

[50]  E. Raff,et al.  Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis , 1991, Cell.

[51]  A. Otsuka,et al.  The C. elegans unc-104 4 gene encodes a putative kinesin heavy chain-like protein , 1991, Neuron.

[52]  Edward D. Salmon,et al.  The Drosophila claret segregation protein is a minus-end directed motor molecule , 1990, Nature.

[53]  R. Raff,et al.  Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. , 1990, Developmental biology.

[54]  L. Goldstein,et al.  Isolation and characterization of the gene encoding the heavy chain of Drosophila kinesin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[55]  E. Raff,et al.  Drosophila kinesin: characterization of microtubule motility and ATPase. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. D. Allen,et al.  Fast axonal transport in squid giant axon. , 1982, Science.

[57]  S. Heidemann,et al.  Polarity orientation of axonal microtubules , 1981, The Journal of cell biology.