Subconvex equidistribution of cusp forms: Reduction to Eisenstein observables
暂无分享,去创建一个
[1] Fei Hou. Hybrid subconvexity bounds for $$L(1/2,\hbox {sym}^{2} f \otimes \chi )$$ , 2021, The Ramanujan Journal.
[2] Dani Szpruch. A short proof for the relation between Weil indices and 𝜖-factors , 2018 .
[3] Yannan Qiu. The Whittaker period formula on metaplectic 𝑆𝐿₂ , 2017, Transactions of the American Mathematical Society.
[4] R. Munshi. Subconvexity for symmetric square $L$-functions , 2017, 1709.05615.
[5] Paul D. Nelson. Quantum variance on quaternion algebras, II , 2017, 1702.02669.
[6] Junehyuk Jung. Quantitative Quantum Ergodicity and the Nodal Domains of Hecke–Maass Cusp Forms , 2016 .
[7] R. Munshi,et al. Hybrid subconvexity bounds for $$L \left( \frac{1}{2}, \hbox {Sym}^2 f \otimes g\right) $$L12,Sym2f⊗g , 2016 .
[8] Paul D. Nelson. Quantum variance on quaternion algebras, III , 2016, 1903.08686.
[9] Paul D. Nelson. Quantum variance on quaternion algebras, I , 2016, 1601.02526.
[10] R. Munshi. The circle method and bounds for $L$-functions – IV: Subconvexity for twists of $\mathrm{GL}(3)$ $L$-functions , 2015 .
[11] Paul D. Nelson,et al. Evaluating modular forms on Shimura curves , 2012, Math. Comput..
[12] Dani Szpruch,et al. Plancherel measures for coverings of p-adic SL(2,F) , 2014, 1411.6134.
[13] Yueke Hu. Triple Product Formula and Mass Equidistribution on Modular Curves of Level N , 2014, 1409.8173.
[14] Yannan Qiu. Periods of Saito-Kurokawa Representations , 2014 .
[15] Yannan Qiu. The Whittaker period formula on Metaplectic SL(2) , 2013, 1308.2353.
[16] P. Sarnak,et al. Nodal Domains of Maass Forms I , 2012, 1207.6625.
[17] E. Kowalski,et al. Algebraic twists of modular forms and Hecke orbits , 2012, 1207.0617.
[18] Paul D. Nelson,et al. Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels , 2012, 1205.5534.
[19] Yannan Qiu. Generalized Formal Degree , 2012 .
[20] Dani Szpruch. On the existence of a p-adic metaplectic Tate-type $\widetilde {\gamma}$-factor , 2011 .
[21] Peter Sarnak,et al. Recent progress on the quantum unique ergodicity conjecture , 2011 .
[22] Paul D. Nelson. Equidistribution Of Cusp Forms In The Level Aspect , 2010, 1011.1292.
[23] Akshay Venkatesh,et al. Distribution of periodic torus orbits and Duke's theorem for cubic fields , 2007, Annals of Mathematics.
[24] Dani Szpruch. On the existence of a p-adic metaplectic Tate-type γ -factor , 2011 .
[25] Y. Choie,et al. THE SHIMURA CORRESPONDENCE À LA WALDSPURGER , 2011 .
[26] V. Blomer,et al. On the Ramanujan conjecture over number fields , 2010, 1003.0559.
[27] Akshay Venkatesh,et al. The subconvexity problem for GL2 , 2009, 0903.3591.
[28] Dani Szpruch. Computation of the local coefficients for principal series representations of the metaplectic double cover of SL2(F) , 2009 .
[29] G. Harcos,et al. Twisted L-Functions Over Number Fields and Hilbert’s Eleventh Problem , 2009, 0904.2429.
[30] K. Soundararajan,et al. Quantum unique ergodicity for SL_2(Z)\H , 2009, 0901.4060.
[31] B. Roberts,et al. On the Number of Local Newforms in a Metaplectic Representation ∗ , 2009 .
[32] Atsushi Ichino. Trilinear forms and the central values of triple product $L$-functions , 2008 .
[33] K. Soundararajan,et al. Mass equidistribution for Hecke eigenforms , 2008, 0809.1636.
[34] R. Holowinsky. Sieving for mass equidistribution , 2008, 0809.1640.
[35] P. Michel. Analytic number theory and families of automorphic L-functions , 2007 .
[36] J. Bernstein,et al. Subconvexity bounds for triple L-functions and representation theory , 2006, math/0608555.
[37] E. Lindenstrauss. Invariant measures and arithmetic quantum unique ergodicity , 2006 .
[38] J. Marklof. Arithmetic Quantum Chaos , 2006 .
[39] Akshay Venkatesh,et al. Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik , 2006 .
[40] G. Harcos,et al. The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II , 2006 .
[41] Akshay Venkatesh. Sparse equidistribution problems, period bounds and subconvexity , 2005, math/0506224.
[42] P. Michel. The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points , 2004 .
[43] P. Sarnak,et al. Mass equidistribution for Hecke eigenforms , 2003 .
[44] Henry H. Kim. Functoriality for the exterior square of ₄ and the symmetric fourth of ₂ , 2003 .
[45] Henry H. Kim,et al. FUNCTORIALITY FOR THE EXTERIOR SQUARE OF GL4 AND THE SYMMETRIC FOURTH OF GL2 , 2003 .
[46] S. Gelbart,et al. A relation between automorphic representations of GL(2) and GL(3) , 2003 .
[47] H. Iwaniec,et al. The subconvexity problem for Artin L–functions , 2002 .
[48] H. Iwaniec,et al. The second moment of the symmetric square $L$-functions , 2001 .
[49] P. Sarnak. Estimates for Rankin–Selberg L-Functions and Quantum Unique Ergodicity , 2001 .
[50] Peter Sarnak,et al. Perspectives on the Analytic Theory of L-Functions , 2000 .
[51] V. Bykovskii. A trace formula for the scalar product of Hecke series and its applications , 1998 .
[52] J. Hoffstein,et al. Siegel zeros and cusp forms , 1995 .
[53] J. Waldspurger. Correspondances de Shimura et quaternions , 1991 .
[54] U. Haagerup,et al. Almost L2 matrix coefficients. , 1988 .
[55] J. Tunnell. On the local Langlands conjecture forGL(2) , 1978 .
[56] S. Gelbart,et al. A relation between automorphic representations of ${\rm GL}(2)$ and ${\rm GL}(3)$ , 1978 .