Subconvex equidistribution of cusp forms: Reduction to Eisenstein observables

Let $\pi$ traverse a sequence of cuspidal automorphic representations of GL(2) with large prime level, unramified central character and bounded infinity type. For G either of the groups GL(1) or PGL(2), let H(G) denote the assertion that subconvexity holds for G-twists of the adjoint $L$-function of $\pi$, with polynomial dependence upon the conductor of the twist. We show that H(GL(1)) implies H(PGL(2)). In geometric terms, H(PGL(2)) corresponds roughly to an instance of arithmetic quantum unique ergodicity with a power savings in the error term, H(GL(1)) to the special case in which the relevant sequence of measures is tested against an Eisenstein series.

[1]  Fei Hou Hybrid subconvexity bounds for $$L(1/2,\hbox {sym}^{2} f \otimes \chi )$$ , 2021, The Ramanujan Journal.

[2]  Dani Szpruch A short proof for the relation between Weil indices and 𝜖-factors , 2018 .

[3]  Yannan Qiu The Whittaker period formula on metaplectic 𝑆𝐿₂ , 2017, Transactions of the American Mathematical Society.

[4]  R. Munshi Subconvexity for symmetric square $L$-functions , 2017, 1709.05615.

[5]  Paul D. Nelson Quantum variance on quaternion algebras, II , 2017, 1702.02669.

[6]  Junehyuk Jung Quantitative Quantum Ergodicity and the Nodal Domains of Hecke–Maass Cusp Forms , 2016 .

[7]  R. Munshi,et al.  Hybrid subconvexity bounds for $$L \left( \frac{1}{2}, \hbox {Sym}^2 f \otimes g\right) $$L12,Sym2f⊗g , 2016 .

[8]  Paul D. Nelson Quantum variance on quaternion algebras, III , 2016, 1903.08686.

[9]  Paul D. Nelson Quantum variance on quaternion algebras, I , 2016, 1601.02526.

[10]  R. Munshi The circle method and bounds for $L$-functions – IV: Subconvexity for twists of $\mathrm{GL}(3)$ $L$-functions , 2015 .

[11]  Paul D. Nelson,et al.  Evaluating modular forms on Shimura curves , 2012, Math. Comput..

[12]  Dani Szpruch,et al.  Plancherel measures for coverings of p-adic SL(2,F) , 2014, 1411.6134.

[13]  Yueke Hu Triple Product Formula and Mass Equidistribution on Modular Curves of Level N , 2014, 1409.8173.

[14]  Yannan Qiu Periods of Saito-Kurokawa Representations , 2014 .

[15]  Yannan Qiu The Whittaker period formula on Metaplectic SL(2) , 2013, 1308.2353.

[16]  P. Sarnak,et al.  Nodal Domains of Maass Forms I , 2012, 1207.6625.

[17]  E. Kowalski,et al.  Algebraic twists of modular forms and Hecke orbits , 2012, 1207.0617.

[18]  Paul D. Nelson,et al.  Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels , 2012, 1205.5534.

[19]  Yannan Qiu Generalized Formal Degree , 2012 .

[20]  Dani Szpruch On the existence of a p-adic metaplectic Tate-type $\widetilde {\gamma}$-factor , 2011 .

[21]  Peter Sarnak,et al.  Recent progress on the quantum unique ergodicity conjecture , 2011 .

[22]  Paul D. Nelson Equidistribution Of Cusp Forms In The Level Aspect , 2010, 1011.1292.

[23]  Akshay Venkatesh,et al.  Distribution of periodic torus orbits and Duke's theorem for cubic fields , 2007, Annals of Mathematics.

[24]  Dani Szpruch On the existence of a p-adic metaplectic Tate-type γ -factor , 2011 .

[25]  Y. Choie,et al.  THE SHIMURA CORRESPONDENCE À LA WALDSPURGER , 2011 .

[26]  V. Blomer,et al.  On the Ramanujan conjecture over number fields , 2010, 1003.0559.

[27]  Akshay Venkatesh,et al.  The subconvexity problem for GL2 , 2009, 0903.3591.

[28]  Dani Szpruch Computation of the local coefficients for principal series representations of the metaplectic double cover of SL2(F) , 2009 .

[29]  G. Harcos,et al.  Twisted L-Functions Over Number Fields and Hilbert’s Eleventh Problem , 2009, 0904.2429.

[30]  K. Soundararajan,et al.  Quantum unique ergodicity for SL_2(Z)\H , 2009, 0901.4060.

[31]  B. Roberts,et al.  On the Number of Local Newforms in a Metaplectic Representation ∗ , 2009 .

[32]  Atsushi Ichino Trilinear forms and the central values of triple product $L$-functions , 2008 .

[33]  K. Soundararajan,et al.  Mass equidistribution for Hecke eigenforms , 2008, 0809.1636.

[34]  R. Holowinsky Sieving for mass equidistribution , 2008, 0809.1640.

[35]  P. Michel Analytic number theory and families of automorphic L-functions , 2007 .

[36]  J. Bernstein,et al.  Subconvexity bounds for triple L-functions and representation theory , 2006, math/0608555.

[37]  E. Lindenstrauss Invariant measures and arithmetic quantum unique ergodicity , 2006 .

[38]  J. Marklof Arithmetic Quantum Chaos , 2006 .

[39]  Akshay Venkatesh,et al.  Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik , 2006 .

[40]  G. Harcos,et al.  The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II , 2006 .

[41]  Akshay Venkatesh Sparse equidistribution problems, period bounds and subconvexity , 2005, math/0506224.

[42]  P. Michel The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points , 2004 .

[43]  P. Sarnak,et al.  Mass equidistribution for Hecke eigenforms , 2003 .

[44]  Henry H. Kim Functoriality for the exterior square of ₄ and the symmetric fourth of ₂ , 2003 .

[45]  Henry H. Kim,et al.  FUNCTORIALITY FOR THE EXTERIOR SQUARE OF GL4 AND THE SYMMETRIC FOURTH OF GL2 , 2003 .

[46]  S. Gelbart,et al.  A relation between automorphic representations of GL(2) and GL(3) , 2003 .

[47]  H. Iwaniec,et al.  The subconvexity problem for Artin L–functions , 2002 .

[48]  H. Iwaniec,et al.  The second moment of the symmetric square $L$-functions , 2001 .

[49]  P. Sarnak Estimates for Rankin–Selberg L-Functions and Quantum Unique Ergodicity , 2001 .

[50]  Peter Sarnak,et al.  Perspectives on the Analytic Theory of L-Functions , 2000 .

[51]  V. Bykovskii A trace formula for the scalar product of Hecke series and its applications , 1998 .

[52]  J. Hoffstein,et al.  Siegel zeros and cusp forms , 1995 .

[53]  J. Waldspurger Correspondances de Shimura et quaternions , 1991 .

[54]  U. Haagerup,et al.  Almost L2 matrix coefficients. , 1988 .

[55]  J. Tunnell On the local Langlands conjecture forGL(2) , 1978 .

[56]  S. Gelbart,et al.  A relation between automorphic representations of ${\rm GL}(2)$ and ${\rm GL}(3)$ , 1978 .