Progress and challenges for next-generation high-efficiency multijunction solar cells

Multijunction solar cells are the most efficient solar cells ever developed with demonstrated efficiencies above 40%, far in excess of the performance of any conventional single-junction cell. This paper describes paths toward next-generation multijunction cells with even higher performance. Starting from fundamental multijunction concepts, the paper describes the desired characteristics of semiconductor materials for multijunction cells; the corresponding challenges in obtaining these characteristics in actual materials; and materials and device architectures to overcome these challenges.

[1]  Takeshi Kitatani,et al.  GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance , 1996 .

[2]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[3]  Harry A. Atwater,et al.  InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation , 2003 .

[4]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[5]  S. Kurtz,et al.  50% Efficient Solar Cell Architectures and Designs , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[6]  Daniel J. Friedman,et al.  Modelling of tandem cell temperature coefficients , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[7]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[8]  Daniel J. Friedman,et al.  Accelerated publication 30.2% efficient GaInP/GaAs monolithic two‐terminal tandem concentrator cell , 1995 .

[9]  Kin Man Yu,et al.  Group III-nitride alloys as photovoltaic materials , 2004, SPIE Optics + Photonics.

[10]  Michael Jay Minot,et al.  Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μ , 1976 .

[11]  Richard M. Swanson,et al.  The promise of concentrators , 2000 .

[12]  Markus Weyers,et al.  Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers , 1992 .

[13]  James S. Harris,et al.  Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy , 2007 .

[14]  Jeffrey Y. Tsao,et al.  Relaxation of strained-layer semiconductor structures via plastic flow , 1987 .

[15]  W. Warta,et al.  Solar cell efficiency tables (version 35) , 2010 .

[16]  Sarah R. Kurtz,et al.  High-efficiency GaInP∕GaAs∕InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction , 2007 .

[17]  S. Kurtz,et al.  Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[18]  E Fred Schubert,et al.  Realization of a near-perfect antireflection coating for silicon solar energy utilization. , 2008, Optics letters.

[19]  M. Brett,et al.  Porous broadband antireflection coating by glancing angle deposition. , 2003, Applied optics.

[20]  H. Atwater,et al.  GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[21]  S. Nakamura,et al.  Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes , 2000 .

[22]  Enhanced-depletion-width GaInNAs solar cells grown by molecular-beam epitaxy , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[23]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[24]  S. Kurtz,et al.  1-eV GaInNAs solar cells for ultrahigh-frequency multijunction devices , 1998 .

[25]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[26]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[27]  Daniel J. Friedman,et al.  40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions , 2008 .

[28]  Chikara Amano,et al.  Efficiency calculations of thin‐film GaAs solar cells on Si substrates , 1985 .

[29]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[30]  Sarah R. Kurtz,et al.  A 27.3 % efficient Ga0.5 In0.5 P/GaAs tandem solar cell , 1990 .

[31]  Eric Daniel Jones,et al.  InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs , 1999 .

[32]  Sarah R. Kurtz,et al.  1-eV solar cells with GaInNAs active layer , 1998 .

[33]  Eoin P. O'Reilly,et al.  Intrinsic limits on electron mobility in dilute nitride semiconductors , 2003 .

[34]  Christiana Honsberg,et al.  Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method , 2008 .

[35]  Sarah R. Kurtz,et al.  Modeling of two‐junction, series‐connected tandem solar cells using top‐cell thickness as an adjustable parameter , 1990 .

[36]  P. Hebert,et al.  Concentrator multijunction solar cell characteristics under variable intensity and temperature , 2008 .

[37]  R. Raffaelle,et al.  Multi-Junction Solar Cell Spectral Tuning with Quantum Dots , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[38]  John F. Muth,et al.  Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .

[39]  Daniel J. Friedman,et al.  Effects of temperature, nitrogen ions, and antimony on wide depletion width GaInNAs , 2007 .

[40]  Gerald Siefer,et al.  Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight , 2009 .

[41]  S. Kurtz,et al.  0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[42]  Daniel J. Aiken,et al.  High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures , 2010 .