Towards optimal lower bounds for clique and chromatic number

[1]  Subhash Khot,et al.  Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[2]  Subhash Khot,et al.  Query efficient PCPs with perfect completeness , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[3]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[4]  José D. P. Rolim,et al.  Proceedings of the 27th International Colloquium on Automata, Languages and Programming , 2000 .

[5]  Jonas Holmerin,et al.  Clique Is Hard to Approximate within n1-o(1) , 2000, ICALP.

[6]  Luca Trevisan,et al.  A PCP characterization of NP with optimal amortized query complexity , 2000, STOC '00.

[7]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[8]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[9]  U. Feige A threshold of ln n for approximating set cover , 1998, JACM.

[10]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[11]  Uriel Feige,et al.  Randomized graph products, chromatic numbers, and the Lovász ϑ-function , 1997, Comb..

[12]  David Zuckerman,et al.  On Unapproximable Versions of NP-Complete Problems , 1996, SIAM J. Comput..

[13]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[14]  Uriel Feige,et al.  Zero knowledge and the chromatic number , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[15]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[16]  Mihir Bellare,et al.  Free bits, PCPs and non-approximability-towards tight results , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[17]  Martin Fürer,et al.  Improved Hardness Results for Approximating the Chromatic Number , 1995, FOCS.

[18]  Uriel Feige,et al.  Randomized graph products, chromatic numbers, and Lovasz j-function , 1995, STOC '95.

[19]  Ran Raz,et al.  A parallel repetition theorem , 1995, STOC '95.

[20]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[21]  Mihir Bellare,et al.  Improved non-approximability results , 1994, STOC '94.

[22]  Nathan Linial,et al.  On the Hardness of Approximating the Chromatic Number , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[23]  Magnús M. Hallórsson A still better performance guarantee for approximate graph coloring , 1993 .

[24]  M. Halldórsson A Still Better Performance Guarantee for Approximate Graph Coloring , 1993, Inf. Process. Lett..

[25]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[26]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[27]  Ravi B. Boppana,et al.  Approximating maximum independent sets by excluding subgraphs , 1990, BIT.

[28]  R. Boppana Approximating Maximum Independent Sets by Excluding Subgraphs 1 , 1990 .

[29]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[30]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[31]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.