A DQ based approach to simulate the vibrations of buckled beams

[1]  Stefania Tomasiello A generalization of the IDQ method and a DQ-based approach to approximate non-smooth solutions in structural analysis , 2007 .

[2]  Ali H. Nayfeh,et al.  On the Nonlinear Dynamics of a Buckled Beam Subjected to a Primary-Resonance Excitation , 2004 .

[3]  Stefania Tomasiello,et al.  Stability and accuracy of the iterative differential quadrature method , 2003 .

[4]  Stefania Tomasiello,et al.  Simulating non-linear coupled oscillators by an iterative differential quadrature method , 2003 .

[5]  Chang Shu,et al.  ON OPTIMAL SELECTION OF INTERIOR POINTS FOR APPLYING DISCRETIZED BOUNDARY CONDITIONS IN DQ VIBRATION ANALYSIS OF BEAMS AND PLATES , 1999 .

[6]  Ali H. Nayfeh,et al.  On the Discretization of Distributed-Parameter Systems with Quadratic and Cubic Nonlinearities , 1997 .

[7]  Chang Shu,et al.  Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates , 1997 .

[8]  Earl H. Dowell,et al.  The role of higher modes in the chaotic motion of the buckled beam—II , 1996 .

[9]  Ali H. Nayfeh,et al.  Experimental Investigation of Single-Mode Responses in a Fixed-Fixed Buckled Beam , 1996 .

[10]  C. Bert,et al.  Differential Quadrature Method in Computational Mechanics: A Review , 1996 .

[11]  Ali H. Nayfeh,et al.  Investigation of Natural Frequencies and Mode Shapes of Buckled Beams , 1995 .

[12]  A. M. Abou-Rayan,et al.  Nonlinear response of a parametrically excited buckled beam , 1993 .

[13]  S. Sinha,et al.  A new numerical technique for the analysis of parametrically excited nonlinear systems , 1993 .

[14]  S. Hanagud,et al.  Studies in chaotic vibrations of buckled beams , 1989 .

[15]  C. Bert,et al.  Application of differential quadrature to static analysis of structural components , 1989 .

[16]  Earl H. Dowell,et al.  On the Threshold Force for Chaotic Motions for a Forced Buckled Beam , 1988 .

[17]  R. Seydel From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .

[18]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[19]  T. D. Burton,et al.  Finite Element Analysis of Nonlinear Oscillators , 1985 .

[20]  Philip Holmes,et al.  Strange Attractors and Chaos in Nonlinear Mechanics , 1983 .

[21]  Jerrold E. Marsden,et al.  A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam , 1981 .

[22]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  Philip Holmes,et al.  A magnetoelastic strange attractor , 1979 .

[24]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[25]  John Dugundji,et al.  Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation , 1971 .