Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators
暂无分享,去创建一个
[1] Sari Lasanen,et al. Non-Gaussian statistical inverse problems. Part I: Posterior distributions , 2012 .
[2] H. Leahu. On the Bernstein-von Mises phenomenon in the Gaussian white noise model , 2011 .
[3] Kolyan Ray,et al. Bayesian inverse problems with non-conjugate priors , 2012, 1209.6156.
[4] Andrew M. Stuart,et al. Bayesian posterior contraction rates for linear severely ill-posed inverse problems , 2012, 1210.1563.
[5] S. Siltanen,et al. Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .
[6] L. Hörmander. The Analysis of Linear Partial Differential Operators III , 2007 .
[7] A. Tikhonov,et al. Numerical Methods for the Solution of Ill-Posed Problems , 1995 .
[8] Barbara Kaltenbacher,et al. Regularization Methods in Banach Spaces , 2012, Radon Series on Computational and Applied Mathematics.
[9] A Tikhonov,et al. Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .
[10] W. Rudin. Real and complex analysis , 1968 .
[11] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[12] Anna Simoni,et al. REGULARIZING PRIORS FOR LINEAR INVERSE PROBLEMS , 2014, Econometric Theory.
[13] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[14] M. Shubin. Pseudodifferential Operators and Spectral Theory , 1987 .
[15] A. V. D. Vaart,et al. BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS , 2011, 1103.2692.
[16] Stig Larsson,et al. Posterior Contraction Rates for the Bayesian Approach to Linear Ill-Posed Inverse Problems , 2012, 1203.5753.
[17] R. Nickl,et al. On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures , 2013, 1310.2484.
[18] Judith Rousseau,et al. On adaptive posterior concentration rates , 2013, 1305.5270.
[19] Erkki Somersalo,et al. Linear inverse problems for generalised random variables , 1989 .
[20] Kolyan Ray. Adaptive Bernstein–von Mises theorems in Gaussian white noise , 2014, 1407.3397.
[21] Matti Lassas. Eero Saksman,et al. Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.
[22] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[23] A. W. Vaart,et al. Bayes procedures for adaptive inference in inverse problems for the white noise model , 2012, Probability Theory and Related Fields.
[24] C. W. Groetsch,et al. The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .
[25] L. Cavalier. Nonparametric statistical inverse problems , 2008 .
[26] S. Vollmer,et al. Posterior consistency for Bayesian inverse problems through stability and regression results , 2013, 1302.4101.
[27] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[28] A. Pascucci. PDE and Martingale Methods in Option Pricing , 2010 .
[29] Subhashis Ghosal,et al. A Review of Consistency and Convergence of Posterior Distribution , 2022 .
[30] Matti Lassas,et al. Analysis of regularized inversion of data corrupted by white Gaussian noise , 2013, 1311.6323.
[31] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[32] I. Rozanov,et al. Infinite-dimensional Gaussian distributions , 1971 .
[33] V. Bogachev. Gaussian Measures on a , 2022 .
[34] B. Knapik,et al. A general approach to posterior contraction in nonparametric inverse problems , 2014, Bernoulli.
[35] R. M. Dudley,et al. Real Analysis and Probability , 1989 .
[36] G. Folland. Compact Heisenberg manifolds as CR manifolds , 2004 .
[37] H. B. Mitchell. Markov Random Fields , 1982 .
[38] L. Wasserman,et al. Rates of convergence of posterior distributions , 2001 .
[39] Harry van Zanten,et al. Honest Bayesian confidence sets for the L2-norm , 2013, 1311.7474.
[40] Ben G. Fitzpatrick,et al. Bayesian analysis in inverse problems , 1991 .
[41] C. Atkinson. METHODS FOR SOLVING INCORRECTLY POSED PROBLEMS , 1985 .
[42] A. Mandelbaum,et al. Linear estimators and measurable linear transformations on a Hilbert space , 1984 .
[43] R. Nickl,et al. Nonparametric Bernstein–von Mises theorems in Gaussian white noise , 2012, 1208.3862.
[44] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[45] David L. Phillips,et al. A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.
[46] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[47] A. W. Vaart,et al. Frequentist coverage of adaptive nonparametric Bayesian credible sets , 2013, 1310.4489.
[48] A. W. van der Vaart,et al. Bayesian Recovery of the Initial Condition for the Heat Equation , 2011, 1111.5876.
[49] A. Tikhonov. On the stability of inverse problems , 1943 .
[50] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[51] A. Kolmogoroff,et al. Zufallige Bewegungen (Zur Theorie der Brownschen Bewegung) , 1934 .
[52] Tzee-Ming Huang. Convergence rates for posterior distributions and adaptive estimation , 2004, math/0410087.
[53] A. Stuart,et al. MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.
[54] Y. Rozanov,et al. Markov random fields , 1984 .
[55] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[56] Van Der Vaart,et al. Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .
[57] V. Kolehmainen,et al. Sparsity-promoting Bayesian inversion , 2012 .
[58] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.