Tetraurea Macrocycles: Aggregation-Driven Binding of Chloride in Aqueous Solutions

[1]  Philip A. Gale,et al.  Anion receptor chemistry: Highlights from 2016 , 2018, Coordination Chemistry Reviews.

[2]  V. Šindelář,et al.  Thermodynamics of Halide Binding to a Neutral Bambusuril in Water and Organic Solvents. , 2018, The Journal of organic chemistry.

[3]  S. Kubik Anion Recognition in Aqueous Media by Cyclopeptides and Other Synthetic Receptors. , 2017, Accounts of chemical research.

[4]  K. Raghavachari,et al.  Anion Binding in Solution: Beyond the Electrostatic Regime , 2017 .

[5]  Y. Marcus,et al.  Effects of Solvent Properties on the Anion Binding of Neutral Water-Soluble Bis(cyclopeptides) in Water and Aqueous Solvent Mixtures , 2017, ACS omega.

[6]  P. Thordarson,et al.  Assessing cooperativity in supramolecular systems. , 2017, Chemical Society reviews.

[7]  Siva Krishna Mohan Nalluri,et al.  Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. , 2017, Chemical Society reviews.

[8]  D. Mobley,et al.  Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. , 2017, Nature chemistry.

[9]  K. Raghavachari,et al.  Anions Stabilize Each Other inside Macrocyclic Hosts. , 2016, Angewandte Chemie.

[10]  H. Katagiri,et al.  Chloride Selective Macrocyclic Bisurea Derivatives with 2,2'-Binaphthalene Moieties as Spacers. , 2016, The Journal of organic chemistry.

[11]  P. Beer,et al.  Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective , 2015, Angewandte Chemie.

[12]  Claudia Caltagirone,et al.  Applications of Supramolecular Anion Recognition. , 2015, Chemical reviews.

[13]  V. Šindelář,et al.  A bambusuril macrocycle that binds anions in water with high affinity and selectivity. , 2015, Angewandte Chemie.

[14]  P. Beer,et al.  Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. , 2014, Nature chemistry.

[15]  Philip A. Gale,et al.  Highly effective yet simple transmembrane anion transporters based upon ortho-phenylenediamine bis-ureas. , 2014, Chemical communications.

[16]  A. Madsen,et al.  Discovery of a cyclic 6 + 6 hexamer of D-biotin and formaldehyde , 2014 .

[17]  Linda S. Shimizu,et al.  Functional materials from self-assembled bis-urea macrocycles. , 2014, Accounts of chemical research.

[18]  K. Rurack,et al.  Test-strip-based fluorometric detection of fluoride in aqueous media with a BODIPY-linked hydrogen-bonding receptor. , 2014, Angewandte Chemie.

[19]  Amar H Flood,et al.  Hydrophobic collapse of foldamer capsules drives picomolar-level chloride binding in aqueous acetonitrile solutions. , 2013, Journal of the American Chemical Society.

[20]  B. Gong,et al.  Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. , 2013, Accounts of chemical research.

[21]  L. Fabbrizzi,et al.  Anion recognition by coordinative interactions: metal-amine complexes as receptors. , 2013, Chemical Society reviews.

[22]  Biao Wu,et al.  Chloride coordination by oligoureas: from mononuclear crescents to dinuclear foldamers. , 2012, Organic letters.

[23]  A. Bianchi,et al.  Anion coordination chemistry , 2012 .

[24]  Raghunath O. Ramabhadran,et al.  Aromatic and aliphatic CH hydrogen bonds fight for chloride while competing alongside ion pairing within triazolophanes. , 2011, Chemistry.

[25]  Philip A. Gale,et al.  Anion Receptor Chemistry , 2016 .

[26]  P. Blondeau,et al.  Molecular recognition of oxoanions based on guanidinium receptors. , 2007, Chemical Society reviews.

[27]  A. Bianchi,et al.  Anion coordination chemistry in aqueous solution of polyammonium receptors , 2006 .

[28]  C. Schmuck How to improve guanidinium cations for oxoanion binding in aqueous solution?: The design of artificial peptide receptors , 2006 .

[29]  Jeffrey S. Moore,et al.  Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. , 2006, Angewandte Chemie.

[30]  T. Gunnlaugsson,et al.  Colorimetric "naked eye" sensing of anions in aqueous solution. , 2005, The Journal of organic chemistry.

[31]  Matthew J. Davis,et al.  Self-assembled nanotubes that reversibly bind acetic acid guests. , 2003, Journal of the American Chemical Society.

[32]  A. Hamilton,et al.  Rigid macrocyclic triamides as anion receptors: anion-dependent binding stoichiometries and 1H chemical shift changes. , 2003, Journal of the American Chemical Society.

[33]  A. Aubry,et al.  Self-assembling organic nanotubes from enantiopure cyclo-N,N'-linked oligoureas: design, synthesis, and crystal structure. , 2002, Angewandte Chemie.

[34]  T. Hayashita,et al.  Positioning dependent anion recognition by thiourea-based chromoionophores via hydrogen bonding in aqueous vesicle solutions , 2000 .

[35]  I. Karle,et al.  Hydrogen-Bonded Self-Assembled Peptide Nanotubes from Cystine-Based Macrocyclic Bisureas , 1999 .

[36]  J. Lehn,et al.  Anion receptor molecules. Synthesis and some anion binding properties of macrocyclic guanidinium salts , 1979 .

[37]  F. Schmidtchen Inclusion of Anions in Macrotricyclic Quaternary Ammonium Salts , 1977 .

[38]  J. Lehn,et al.  Anion cryptates: highly stable and selective macrotricyclic anion inclusion complexes , 1976 .