Two-photon phase gate with linear optical elements and atom–cavity system

We propose a protocol for implementing $$\pi $$π phase gate of two photons with linear optical elements and an atom–cavity system. The evolution of the atom–cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.

[1]  Fu-Guo Deng,et al.  Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities , 2013, 1302.0046.

[2]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[3]  Guang-Can Guo,et al.  Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors , 2007 .

[4]  Yu-Bo Sheng,et al.  Efficient quantum entanglement distribution over an arbitrary collective-noise channel , 2010, 1005.0050.

[5]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[6]  Ping Zhou,et al.  Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements , 2006 .

[7]  P. Facchi,et al.  Quantum Zeno subspaces. , 2002, Physical review letters.

[8]  Wen-An Li,et al.  Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics , 2011 .

[9]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[10]  V. N. Gorbachev,et al.  Can the states of the W-class be suitable for teleportation , 2002, quant-ph/0203028.

[11]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[12]  Shi-Biao Zheng,et al.  Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade , 2010 .

[13]  Ye-Hong Chen,et al.  Deterministic generation of singlet states for $$N$$N-atoms in coupled cavities via quantum Zeno dynamics , 2014, Quantum Inf. Process..

[14]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[15]  Joshua Combes,et al.  Passive CPHASE Gate via Cross-Kerr Nonlinearities. , 2016, Physical review letters.

[16]  Hideharu Mikami,et al.  Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion , 2004 .

[17]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[18]  Lov K. Grover Quantum Computers Can Search Rapidly by Using Almost Any Transformation , 1998 .

[19]  Jiangfeng Du,et al.  Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. , 2012, Physical review letters.

[20]  Fu-Guo Deng,et al.  Hyper-parallel photonic quantum computation with coupled quantum dots , 2013, Scientific Reports.

[21]  E.C.G. Sudarshan,et al.  Quantum Zeno dynamics , 2000 .

[22]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[23]  Giuseppe Marmo,et al.  Quantum Zeno dynamics and quantum Zeno subspaces , 2007, 0711.4280.

[24]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[25]  Fu-Guo Deng,et al.  Efficient multipartite entanglement purification with the entanglement link from a subspace , 2011, 1110.0059.

[26]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[27]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[28]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[29]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[30]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[31]  Seung-Woo Lee,et al.  Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits , 2011, 1112.0825.

[32]  Alfredo Luis Quantum-state preparation and control via the Zeno effect , 2001 .

[33]  Shi-Biao Zheng,et al.  Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces , 2009 .

[34]  Yi-Hao Kang,et al.  Efficient preparation of Greenberger–Horne–Zeilinger state and W state of atoms with the help of the controlled phase flip gates in quantum nodes connected by collective-noise channels , 2015 .

[35]  H. J. Kimble,et al.  Optimal sizes of dielectric microspheres for cavity QED with strong coupling , 2003 .

[36]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[37]  Fu-Guo Deng,et al.  Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity , 2013, 1303.0056.

[38]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[39]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[40]  H J Kimble,et al.  State-insensitive cooling and trapping of single atoms in an optical cavity. , 2003, Physical review letters.

[41]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[42]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[43]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[44]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[45]  Jie Song,et al.  Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities , 2007 .

[46]  P. Facchi,et al.  Zeno dynamics yields ordinary constraints , 2001 .

[47]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[48]  Paolo Facchi,et al.  Chapter 3 Quantum Zeno and inverse quantum Zeno effects , 2001 .

[49]  Franco Nori,et al.  Implementing general measurements on linear optical and solid-state qubits , 2012, 1201.2234.

[50]  Mang Feng,et al.  Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference , 2007 .

[51]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[52]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[53]  Jeffrey H. Shapiro,et al.  Deterministic and Cascadable Conditional Phase Gate for Photonic Qubits , 2012, 1202.6640.

[54]  Gilles Nogues,et al.  Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED , 1999 .

[55]  M. Koashi,et al.  Polarization-entangled W state using parametric down-conversion , 2002, quant-ph/0208162.

[56]  Xiao-Qiang Shao,et al.  Fast CNOT gate via quantum Zeno dynamics , 2009 .

[57]  Christian Kurtsiefer,et al.  Experimental realization of a three-qubit entangled W state. , 2004, Physical review letters.

[58]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[59]  Yan Xia,et al.  Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states , 2014, 1410.8285.

[60]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[61]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.