The R-Process Alliance: Abundance Universality among Some Elements at and between the First and Second R-Process Peaks

We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A ∼ 80) and second (A ∼ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z = 34) or Te (Z = 52) detections, whose r-process enhancement varies by more than a factor of 30 (−0.22 ≤ [Eu/Fe] ≤ +1.32). We calculate ratios among the abundances of Se, Sr through Mo (38 ≤ Z ≤ 42), and Te. These benchmarks may offer a new empirical alternative to the predicted solar system r-process residual pattern. The Te abundances in these stars correlate more closely with the lighter r-process elements than the heavier ones, contradicting and superseding previous findings. The small star-to-star dispersion among the abundances of Se, Sr, Y, Zr, Nb, Mo, and Te (≤0.13 dex, or 26%) matches that observed among the abundances of the lanthanides and third r-process-peak elements. The concept of r-process universality that is recognized among the lanthanide and third-peak elements in r-process-enhanced stars may also apply to Se, Sr, Y, Zr, Nb, Mo, and Te, provided the overall abundances of the lighter r-process elements are scaled independently of the heavier ones. The abundance behavior of the elements Ru through Sn (44 ≤ Z ≤ 50) requires further study. Our results suggest that at least one relatively common source in the early Universe produced a consistent abundance pattern among some elements spanning the first and second r-process peaks.

[1]  E. A. Den Hartog,et al.  The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925 , 2022, The Astrophysical Journal Supplement Series.

[2]  S. Rosswog,et al.  Correlations of r-process elements in very metal-poor stars as clues to their nucleosynthesis sites , 2021, Astronomy & Astrophysics.

[3]  B. Schmidt,et al.  r-Process elements from magnetorotational hypernovae , 2021, Nature.

[4]  H. Matsuzaki,et al.  60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae , 2021, Science.

[5]  James E. Lawler,et al.  Linemake: An Atomic and Molecular Line List Generator , 2021, Research Notes of the AAS.

[6]  E. A. Den Hartog,et al.  Improved Atomic Transition Probabilities for UV and Optical Lines of Hf II and Determination of the Hf Abundance in Two Metal-poor Stars , 2021, The Astrophysical Journal Supplement Series.

[7]  J. Barnes,et al.  Kilonovae Across the Nuclear Physics Landscape: The Impact of Nuclear Physics Uncertainties on r-process-powered Emission , 2020, The Astrophysical Journal.

[8]  J. Barnes,et al.  Modeling Kilonova Light Curves: Dependence on Nuclear Inputs , 2020, The Astrophysical Journal.

[9]  B. Gibson,et al.  The R-Process Alliance: Fourth Data Release from the Search for R-process-enhanced Stars in the Galactic Halo , 2020, The Astrophysical Journal Supplement Series.

[10]  J. Lippuner,et al.  The landscape of disc outflows from black hole–neutron star mergers , 2020, 2005.14208.

[11]  E. A. Den Hartog,et al.  Hyperfine Structure Constants for Levels of 175Lu+ , 2020, The Astrophysical Journal Supplement Series.

[12]  B. Barbuy,et al.  Trans-iron Ge, As, Se, and heavier elements in the dwarf metal-poor stars HD 19445, HD 84937, HD 94028, HD 140283, and HD 160617 , 2020, Astronomy & Astrophysics.

[13]  T. Fischer,et al.  Core-collapse Supernova Explosions Driven by the Hadron-quark Phase Transition as a Rare r-process Site , 2020, Astrophysical Journal.

[14]  S. Salvadori,et al.  Evidence for ≳4 Gyr timescales of neutron star mergers from Galactic archaeology , 2020, Astronomy & Astrophysics.

[15]  M. Mumpower,et al.  Coproduction of Light and Heavy r-process Elements via Fission Deposition , 2019, The Astrophysical Journal.

[16]  A. Chieffi,et al.  Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r- process components , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  J. Fynbo,et al.  Identification of strontium in the merger of two neutron stars , 2019, Nature.

[18]  M. Pignatari,et al.  Using failed supernovae to constrain the Galactic r-process element production , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  Chris L. Fryer,et al.  A line-binned treatment of opacities for the spectra and light curves from neutron star mergers , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  D. Siegel,et al.  Collapsars as a major source of r-process elements , 2018, Nature.

[21]  Chris L. Fryer,et al.  Neutron Star Mergers Might Not Be the Only Source of r-process Elements in the Milky Way , 2018, The Astrophysical Journal.

[22]  J. Simon,et al.  Chemical Abundances in the Ultra-faint Dwarf Galaxies Grus I and Triangulum II: Neutron-capture Elements as a Defining Feature of the Faintest Dwarfs , 2018, The Astrophysical Journal.

[23]  T. Beers,et al.  TheR-Process Alliance: A Comprehensive Abundance Analysis of HD 222925, a Metal-poor Star with an ExtremeR-process Enhancement of [Eu/H] = −0.14 , 2018, The Astrophysical Journal.

[24]  C. Chiappini,et al.  Non-standard s-process in massive rotating stars , 2018, Astronomy & Astrophysics.

[25]  T. Beers,et al.  The R-Process Alliance: Chemical Abundances for a Trio of r-process-enhanced Stars—One Strong, One Moderate, and One Mild , 2018, The Astrophysical Journal.

[26]  Chris L. Fryer,et al.  Californium-254 and Kilonova Light Curves , 2018, The Astrophysical Journal.

[27]  A. Frebel From Nuclei to the Cosmos: Tracing Heavy-Element Production with the Oldest Stars , 2018, Annual Review of Nuclear and Particle Science.

[28]  T. Beers,et al.  The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known , 2018, The Astrophysical Journal.

[29]  A. Chieffi,et al.  Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range −3 ≤ [Fe/H] ≤ 0 , 2018, The Astrophysical Journal Supplement Series.

[30]  P. Bonifacio,et al.  Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars , 2018, 1801.01304.

[31]  F. Herwig,et al.  i-process Contribution of Rapidly Accreting White Dwarfs to the Solar Composition of First-peak Neutron-capture Elements , 2017, 1712.07551.

[32]  Y. Qian,et al.  New Neutron-capture Site in Massive Pop III and Pop II Stars as a Source for Heavy Elements in the Early Galaxy , 2017, The Astrophysical Journal.

[33]  A. Frebel,et al.  JINAbase—A Database for Chemical Abundances of Metal-poor Stars , 2017, The Astrophysical Journal Supplement Series.

[34]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[35]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[36]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[37]  F.-K. Thielemann,et al.  Neutron Star Mergers and Nucleosynthesis of Heavy Elements , 2017, 1710.02142.

[38]  F. Herwig,et al.  Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars , 2017, 1710.01763.

[39]  D. Gerdes,et al.  An r-process Enhanced Star in the Dwarf Galaxy Tucana III , 2017, 1702.07430.

[40]  W. Aoki,et al.  Diversity of Abundance Patterns of Light Neutron-capture Elements in Very-metal-poor Stars , 2017, 1701.08599.

[41]  H. Janka,et al.  Nucleosynthesis in the Innermost Ejecta of Neutrino-driven Supernova Explosions in Two Dimensions , 2017, 1701.06786.

[42]  F. Kappeler,et al.  GALACTIC CHEMICAL EVOLUTION: THE IMPACT OF THE 13C-POCKET STRUCTURE ON THE s-PROCESS DISTRIBUTION , 2017, 1701.01056.

[43]  R. Hirschi,et al.  Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations , 2017, 1701.00489.

[44]  B. Metzger,et al.  Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers , 2016, 1607.05290.

[45]  D. Nidever,et al.  DETAILED CHEMICAL ABUNDANCES IN THE r-PROCESS-RICH ULTRA-FAINT DWARF GALAXY RETICULUM 2 , 2016, 1601.04070.

[46]  J. Simon,et al.  R-process enrichment from a single event in an ancient dwarf galaxy , 2015, Nature.

[47]  Thomas Rauscher,et al.  s-process production in rotating massive stars at solar and low metallicities , 2015, 1511.05730.

[48]  T. Piran,et al.  Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis , 2015, Nature Physics.

[49]  F. Grupp,et al.  Palladium and silver abundances in stars with [Fe/H] > -2.6 , 2015, 1505.04356.

[50]  W. Kutschera,et al.  Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis , 2015, Nature Communications.

[51]  S. Shectman,et al.  Nine new metal-poor stars on the subgiant and red horizontal branches with high levels of r-process enhancement , 2014, 1409.5810.

[52]  N. Christlieb,et al.  The Hamburg/ESO R-process Enhanced Star survey (HERES) - X. HE 2252−4225, one more r-process enhanced and actinide-boost halo star , 2014, 1407.5379.

[53]  A. Andersen,et al.  Stellar abundances and presolar grains trace the nucleosynthetic origin of molybdenum and ruthenium , 2014, 1406.6686.

[54]  T. Beers,et al.  High-resolution abundance analysis of very metal-poor r-I stars , 2014, 1404.0234.

[55]  D. Kelson,et al.  A SEARCH FOR STARS OF VERY LOW METAL ABUNDANCE. VI. DETAILED ABUNDANCES OF 313 METAL-POOR STARS , 2014, 1403.6853.

[56]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants { II. Radioactively powered transients , 2013, 1307.2943.

[57]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants – I. The impact of r-process nucleosynthesis , 2013, 1307.2939.

[58]  C. Chiappini,et al.  The s-process in the Galactic halo: the fifth signature of spinstars in the early Universe? , 2013, 1302.4354.

[59]  T. Beers,et al.  XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-001 ?;?? , 2013 .

[60]  T. Beers,et al.  NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS , 2012, 1210.6387.

[61]  F. Herwig,et al.  The NuGrid Research Platform: A Comprehensive Simulation Approach for Nuclear Astrophysics , 2012 .

[62]  F. Thielemann,et al.  Neutrino-driven wind simulations and nucleosynthesis of heavy elements , 2012, 1207.2527.

[63]  B. Leibundgut,et al.  Silver and palladium help unveil the nature of a second r-process , 2012, 1205.4744.

[64]  V. Hill,et al.  XV. Third-peak r-process element and actinide abundances in the uranium-rich star CS31082-001 , 2011 .

[65]  S. Cristallo,et al.  The s-Process in Low Metallicity Stars. II. Interpretation of High-Resolution Spectroscopic Observations with AGB models , 2011, 1108.0500.

[66]  É. Biémont,et al.  Lifetime measurements and calculations in Y+ and Y2+ ions , 2011 .

[67]  S. Shectman,et al.  THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.

[68]  V. Hill,et al.  The Hamburg/ESO R-process enhanced star survey (HERES). V. Detailed abundance analysis of the r-process enhanced star HE 2327-5642 , 2010, 1003.3571.

[69]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[70]  V. Hill,et al.  The Hamburg/ESO R-process enhanced star survey (HERES) IV. Detailed abundance analysis and age dating of the strongly r-process enhanced stars CS 29491-069 and HE 1219-0312 , 2009, 0910.0707.

[71]  A. Mezzacappa,et al.  Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations , 2009, 0908.1871.

[72]  E. A. Den Hartog,et al.  NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS , 2009, 0903.1623.

[73]  H. Nilsson,et al.  Experimental oscillator strengths and hyperfine constants in Nb ii , 2008 .

[74]  Torino,et al.  The s-Process in Massive Stars at Low Metallicity: The Effect of Primary 14N from Fast Rotating Stars , 2008, 0810.0182.

[75]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[76]  G. Wasserburg,et al.  Abundances of Sr, Y, and Zr in Metal-Poor Stars and Implications for Chemical Evolution in the Early Galaxy , 2008, 0807.0809.

[77]  David K. Lai,et al.  Detailed Abundances for 28 Metal-poor Stars: Stellar Relics in the Milky Way , 2008, 0804.1370.

[78]  T. Beers,et al.  First stars VIII. Enrichment of the neutron-capture elements in the early Galaxy , 2007, 0709.3454.

[79]  T. Beers,et al.  Nucleosynthesis in the Early Galaxy , 2007, 0709.0417.

[80]  W. Aoki,et al.  Neutron-Capture Elements in the Very Metal-poor Star HD 88609: Another Star with Excesses of Light Neutron-Capture Elements , 2007, 0705.3975.

[81]  K. Kratz,et al.  Explorations of the r-Processes: Comparisons between Calculations and Observations of Low-Metallicity Stars , 2007, astro-ph/0703091.

[82]  I. Ivans,et al.  Improved Laboratory Transition Probabilities for Hf II and Hafnium Abundances in the Sun and 10 Metal-poor Stars , 2007 .

[83]  M. Asplund,et al.  New and improved experimental oscillator strengths in Zr II and the solar abundance of zirconium , 2006 .

[84]  S. Shectman,et al.  Atmospheres, Chemical Compositions, and Evolutionary Histories of Very Metal-Poor Red Horizontal-Branch Stars in the Galactic Field and in NGC 7078 (M15) , 2006 .

[85]  I. Ivans,et al.  Near-Ultraviolet Observations of HD 221170: New Insights into the Nature of r-Process-rich Stars , 2006, astro-ph/0604180.

[86]  A. Jorissen,et al.  Transition probabilities and lifetimes in neutral and singly ionized osmium and the Solar osmium abundance , 2006 .

[87]  S. Ryan,et al.  Neutron-Capture Elements in the Very Metal Poor Star HD 122563 , 2006, astro-ph/0602107.

[88]  F.-J. Zickgraf,et al.  The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample , 2005, astro-ph/0505050.

[89]  T. Beers,et al.  Spectroscopic Studies of Very Metal-poor Stars with the Subaru High Dispersion Spectrograph. III. Light Neutron-Capture Elements , 2005, astro-ph/0503032.

[90]  T. Beers,et al.  Hubble Space Telescope Observations of Heavy Elements in Metal-Poor Galactic Halo Stars , 2005 .

[91]  T. Beers,et al.  Improved Laboratory Transition Probabilities for Pt I and Application to the Platinum Abundances of BD +17°3248 and the Sun , 2005 .

[92]  H. Lundberg,et al.  Constraining the very heavy elemental abundance peak in the chemically peculiar star χ Lupi, with new atomic data for Os II and Ir II , 2004 .

[93]  G. Meynet,et al.  Stellar evolution with rotation XII. Pre-supernova models , 2004, astro-ph/0406552.

[94]  T. Beers,et al.  Spectroscopic Studies of Extremely Metal-Poor Stars with the Subaru High Dispersion Spectrograph. II. The r-Process Elements, Including Thorium , 2004, astro-ph/0402298.

[95]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[96]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[97]  Jennifer A. Johnson,et al.  The r-Process in the Early Galaxy , 2002, astro-ph/0208375.

[98]  T. Beers,et al.  The Chemical Composition and Age of the Metal-poor Halo Star BD +17°3248 , 2002, astro-ph/0202429.

[99]  Jennifer A. Johnson Abundances of 30 Elements in 23 Metal-Poor Stars , 2001, astro-ph/0111181.

[100]  Zhongshan Li,et al.  Experimental MoII oscillator strengths , 2001 .

[101]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for Heavy Elements , 2000 .

[102]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[103]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants , 2000, astro-ph/0005188.

[104]  C. Sneden,et al.  The r-Process-enriched Low-Metallicity Giant HD 115444 , 1999, astro-ph/9910376.

[105]  Lee D. Feinberg,et al.  The Space Telescope Imaging Spectrograph Design , 1998 .

[106]  A. McWilliam Barium Abundances in Extremely Metal-poor Stars , 1998 .

[107]  Lee D. Feinberg,et al.  The On-Orbit Performance of the Space Telescope Imaging Spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[108]  G. Wasserburg,et al.  Abundances of Actinides and Short-lived Nonactinides in the Interstellar Medium: Diverse Supernova Sources for the r-Processes , 1996 .

[109]  C. Sneden,et al.  First Detection of Platinum, Osmium, and Lead in a Metal-Poor Halo Star: HD 126238 , 1996 .

[110]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[111]  C. Hansen,et al.  The origin of palladium and silver , 2011 .

[112]  F. Thielemann,et al.  The r-Process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with A ≤ 130 , 2008 .

[113]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[114]  Christopher Sneden,et al.  Hubble Space Telescope Observations of Neutron-Capture Elements in Very Metal Poor Stars , 1998 .

[115]  F. Thielemann,et al.  Isotopic r-process abundances and nuclear structure far from stability. , 1993 .