Force- and length-dependent catastrophe activities explain interphase microtubule organization in fission yeast

[1]  Attila Csikász-Nagy,et al.  Spatial controls for growth zone formation during the fission yeast cell cycle , 2008, Yeast.

[2]  F. Nédélec,et al.  Collective Langevin dynamics of flexible cytoskeletal fibers , 2007, 0903.5178.

[3]  D. Mastronarde,et al.  Organization of interphase microtubules in fission yeast analyzed by electron tomography. , 2007, Developmental cell.

[4]  F. Nédélec,et al.  Crosslinkers and Motors Organize Dynamic Microtubules to Form Stable Bipolar Arrays in Fission Yeast , 2007, Cell.

[5]  P. Nurse,et al.  Self-organization of interphase microtubule arrays in fission yeast , 2006, Nature Cell Biology.

[6]  Mohan L Gupta,et al.  Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle , 2006, Nature Cell Biology.

[7]  Anthony A. Hyman,et al.  Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner , 2006, Nature Cell Biology.

[8]  R. Daga,et al.  Asymmetric Microtubule Pushing Forces in Nuclear Centering , 2006, Current Biology.

[9]  X. Le Goff,et al.  Fission yeast cytoskeletons and cell polarity factors: connecting at the cortex. , 2006, Biology of the cell.

[10]  Francesco S. Pavone,et al.  Nuclear and Division-Plane Positioning Revealed by Optical Micromanipulation , 2005, Current Biology.

[11]  Fred Chang,et al.  Dynamic positioning of the fission yeast cell division plane. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Kenneth E. Sawin,et al.  Tea for three: control of fission yeast polarity , 2005, Nature Cell Biology.

[13]  T. G. Setty,et al.  Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. , 2005, Molecular biology of the cell.

[14]  Marileen Dogterom,et al.  Force generation by dynamic microtubules. , 2005, Current opinion in cell biology.

[15]  Marileen Dogterom,et al.  Scaling of microtubule force-velocity curves obtained at different tubulin concentrations. , 2004, Physical review letters.

[16]  K. Sawin,et al.  Role of microtubules and tea1p in establishment and maintenance of fission yeast cell polarity , 2004, Journal of Cell Science.

[17]  Marileen Dogterom,et al.  Dynamic instability of microtubules is regulated by force , 2003, The Journal of cell biology.

[18]  P. Nurse,et al.  Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton , 2002, The Journal of cell biology.

[19]  J. McIntosh,et al.  Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. , 2001, Molecular biology of the cell.

[20]  Jacqueline Hayles,et al.  A journey into space , 2001, Nature Reviews Molecular Cell Biology.

[21]  V. Doye,et al.  A Mechanism for Nuclear Positioning in Fission Yeast Based on Microtubule Pushing , 2001, The Journal of cell biology.

[22]  P. Nurse,et al.  CLIP170-like tip1p Spatially Organizes Microtubular Dynamics in Fission Yeast , 2000, Cell.

[23]  R. Cross,et al.  Dynamics of interphase microtubules in Schizosaccharomyces pombe , 2000, Current Biology.

[24]  P. Nurse,et al.  Regulation of Cell Polarity by Microtubules in Fission Yeast , 1998, The Journal of cell biology.

[25]  B. Yurke,et al.  Measurement of the force-velocity relation for growing microtubules. , 1997, Science.

[26]  P. Nurse,et al.  tea1 and the Microtubular Cytoskeleton Are Important for Generating Global Spatial Order within the Fission Yeast Cell , 1997, Cell.

[27]  S. Leibler,et al.  Influence of M-phase chromatin on the anisotropy of microtubule asters , 1996, The Journal of cell biology.