The role of surface sites on the oscillatory oxidation of methanol on Stepped 1 Pt [ n ( 111 ) x ( 110 ) ] electrodes 2 3

[1]  J. Gallas,et al.  Modeling the triple-path electro-oxidation of formic acid on platinum: Cyclic voltammetry and oscillations , 2021 .

[2]  J. G. Freire,et al.  Phase diagrams and dynamical evolution of the triple-pathway electro-oxidation of formic acid on platinum. , 2020, Physical chemistry chemical physics : PCCP.

[3]  E. Herrero,et al.  Pt(hkl) surface charge and reactivity , 2019, Current Opinion in Electrochemistry.

[4]  Di Wang,et al.  Cyclic Voltammetry Characterization of Au, Pd, and AuPd Nanoparticles Supported on Different Carbon Nanofibers , 2019, Surfaces.

[5]  H. Varela,et al.  The effect of solution pH on the oscillatory electro-oxidation of methanol , 2018, Journal of Electroanalytical Chemistry.

[6]  H. Varela,et al.  Probing the surface fine structure through electrochemical oscillations. , 2018, Physical chemistry chemical physics : PCCP.

[7]  J. Feliu,et al.  Understanding the CO Preoxidation and the Intrinsic Catalytic Activity of Step Sites in Stepped Pt Surfaces in Acidic Medium , 2015 .

[8]  H. Varela,et al.  Oscillatory Electro-oxidation of Methanol on Nanoarchitectured Ptpc/Rh/Pt Metallic Multilayer , 2015 .

[9]  H. Varela,et al.  Production of Volatile Species during the Oscillatory Electro-oxidation of Small Organic Molecules , 2014 .

[10]  H. Okamoto,et al.  Separate Current Range for Appearance of Potential Oscillation during Methanol Oxidation on Platinum , 2014 .

[11]  I. Epstein,et al.  Long-lasting oscillations in the electro-oxidation of formic acid on PtSn intermetallic surfaces. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  H. Varela,et al.  Influence of Anion Adsorption on the Parallel Reaction Pathways in the Oscillatory Electro-oxidation of Methanol , 2013 .

[13]  M. Koper,et al.  Water dissociation on well-defined platinum surfaces: The electrochemical perspective , 2013 .

[14]  H. Varela,et al.  Electrocatalytic activity under oscillatory regime: The electro-oxidation of formic acid on ordered Pt3Sn intermetallic phase , 2013 .

[15]  M. Cabral,et al.  Mechanistic aspects of the linear stabilization of non-stationary electrochemical oscillations. , 2013, Physical chemistry chemical physics : PCCP.

[16]  H. Varela,et al.  The dual pathway in action: decoupling parallel routes for CO2 production during the oscillatory electro-oxidation of methanol. , 2012, Physical chemistry chemical physics : PCCP.

[17]  V. Climent,et al.  The role of the surface structure in the oxidation mechanism of methanol , 2011 .

[18]  V. Del Colle,et al.  Electrochemical and spectroscopic studies of ethanol oxidation on Pt stepped surfaces modified by tin adatoms. , 2011, Physical chemistry chemical physics : PCCP.

[19]  H. Varela,et al.  Stabilizing Nonstationary Electrochemical Time Series , 2010 .

[20]  M. Eiswirth,et al.  Mechanism and model of the oscillatory electro-oxidation of methanol. , 2010, The Journal of chemical physics.

[21]  E. Gonzalez,et al.  Temperature effects on the oscillatory electro-oxidation of methanol on platinum. , 2009, Physical chemistry chemical physics : PCCP.

[22]  H. Varela,et al.  Oscillatory instabilities during the electrocatalytic oxidation of methanol on platinum , 2008 .

[23]  E. Gonzalez,et al.  Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. , 2008, Faraday discussions.

[24]  H. Okamoto,et al.  Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a time-resolved surface-enhanced infrared study. , 2005, The journal of physical chemistry. B.

[25]  T. Iwasita,et al.  New insight into the pathways of methanol oxidation , 2003 .

[26]  M. Koper,et al.  Methanol Oxidation on Stepped Pt[n(111) × (110)] Electrodes: A Chronoamperometric Study , 2003 .

[27]  T. Iwasita Electrocatalysis of methanol oxidation , 2002 .

[28]  G. Ertl,et al.  Electrochemical oscillations in the methanol oxidation on Pt , 2002 .

[29]  P. Ross,et al.  Surface science studies of model fuel cell electrocatalysts , 2002 .

[30]  H. Baltruschat,et al.  Formation of intermediates during methanol oxidation: A quantitative DEMS study , 2001 .

[31]  M. J. Weaver,et al.  Dependence of the Potential of Zero Charge of Stepped Platinum (111) Electrodes on the Oriented Step-Edge Density: Electrochemical Implications and Comparison with Work Function Behavior , 2000 .

[32]  T. Jarvi,et al.  A kinetic analysis of distinct reaction pathways in methanol electrocatalysis on Pt(111) , 1998 .

[33]  N. Tanaka,et al.  Chaos in the Oxidation of Formaldehyde and/or Methanol , 1997 .

[34]  W. Vielstich,et al.  Potential oscillations during methanol oxidation at Pt-electrodes Part 1: experimental conditions , 1995 .

[35]  C. Korzeniewski,et al.  Infrared Spectroscopic Detection of CO Formed at Step and Terrace Sites on a Corrugated Electrode Surface Plane during Methanol Oxidation , 1995 .

[36]  A. Wiȩckowski,et al.  Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study , 1994 .

[37]  J. Clavilier,et al.  Electrochemical monitoring of the thermal reordering of platinum single-crystal surfaces after metallographic polishing from the early stage to the equilibrium surfaces , 1990 .

[38]  Shigang Sun,et al.  Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions , 1986 .

[39]  G. Somorjai,et al.  Low energy electron diffraction studies of high index crystal surfaces of platinum , 1972 .