Load-Independent Control of Switching DC-DC Converters With Freewheeling Current Feedback

A new control scheme of freewheeling current control is proposed for switching DC-DC converters. The output voltage is regulated by a comparator operation, and in the main current loop, the freewheeling current is feedback-controlled to a reference level in average. The converter control loop is no longer dependent on the values of the inductor, output capacitor, or the load equivalent resistance. The design of a loop compensator is therefore greatly simplified and the loop response can be very fast approaching that of a hysteresis converter. As an example, a single-inductor bipolar-output DC-DC converter with the proposed freewheeling current control is implemented in a 0.5 mum BiCMOS process. The converter has one positive output of 4 V and one negative output of -4.8 V. A maximum efficiency of 81% is achieved at a total output power of 250 mW with a switching frequency of 800 kHz.

[1]  Wing-Hung Ki,et al.  Fast-Transient PCCM Switching Converter With Freewheel Switching Control , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Chi-Ying Tsui,et al.  A pseudo-CCM/DCM SIMO switching converter with freewheel switching , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[3]  Gyu-Hyeong Cho,et al.  A Single-Inductor Switching DC-DC Converter with 5 Outputs and Ordered Power-Distributive Control , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[4]  Robert W. Erickson,et al.  Fundamentals of Power Electronics , 2001 .

[5]  Min-Chul Lee,et al.  A Single-Inductor Step-Up DC-DC Switching Converter with Bipolar Outputs for Active Matrix OLED Mobile Display Panels , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.