The Performance of an LMS Adaptive Array with Frequency Hopped Signals

The performance of an LMS adaptive array with a frequency hopped, spread spectrum desired signal and a CW interference signal is examined. It is shown that frequency hopping has several effects on an adaptive array. It causes the array to modulate both the amplitude and the phase of the received signal. Also, it causes the array output SINR (signal-to-interference-plus-noise ratio) to vary with time and thus increases the bit error probability for the received signal. Typical curves of the desired signal modulation and the time-varying SINR at the array output are presented. It is shown how the array performance depends on hopping frequency, frequency jump size, interference frequency, signal arrival angles, and signal powers.