Automatic identification of Scenedesmus polymorphic microalgae from microscopic images

Microalgae counting is used to measure biomass quantity. Usually, it is performed in a manual way using a Neubauer chamber and expert criterion, with the risk of a high error rate. Scenedesmus algae can build coenobia consisting of 1, 2, 4 and 8 cells. The amount of algae of each coenobium helps to determine the amount of lipids, proteins, and other substances in a given sample of a algae crop. The knowledge of the quantity of those elements improves the quality of bioprocess applications. This paper addresses the methodology for automatic identification of Scenedesmus microalgae (used in the methane production and food industry) and applies it to images captured by a digital microscope. The use of contrast adaptive histogram equalization for pre-processing, and active contours for segmentation are presented. The calculation of statistical features (histogram of oriented gradients, Hu and Zernike moments) with texture features (Haralick and local binary patterns descriptors) are proposed for algae characterization. Classification of coenobia achieves accuracies of 98.63% and 97.32% with support vector machine and artificial neural network, respectively. According to the results, it is possible to consider the proposed methodology as an alternative to the traditional technique for algae counting. In addition, the database used for the developing of the proposed methodology is publicly available.

[1]  Natchimuthu Santhi,et al.  Automatic Identification of Algal Community from Microscopic Images , 2013, Bioinformatics and biology insights.

[2]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[3]  O CatalinaQuevedo,et al.  Scenedesmus sp GROWTH IN DIFFERENT CULTURE mediums FOR MICROALGAL PROTEIN PRODUCTION , 2008 .

[4]  Quentin Geissmann,et al.  OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects , 2012, PloS one.

[5]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Julio Abalde,et al.  Microalgas: cultivo y aplicaciones , 1995 .

[8]  Christian Osendorfer,et al.  Sequential Feature Selection for Classification , 2011, Australasian Conference on Artificial Intelligence.

[9]  Chenhui Yang,et al.  Automatic Identification of Diatoms with Circular Shape using Texture Analysis , 2011, J. Softw..

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[12]  Gustavo Fernandez Dominguez,et al.  Semi-automatic generation of accurate ground truth data in video sequences , 2014, 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[13]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[14]  Stefan U. Thiel,et al.  Automated object recognition of blue-green algae for measuring water quality—A preliminary study , 1995 .

[15]  Dong-Chen He,et al.  Texture Unit, Texture Spectrum And Texture Analysis , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[16]  Patricia A Terry,et al.  Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. , 2002, Chemosphere.

[17]  B. Pawlik-Skowrońska,et al.  Differential responses to Cr(VI)-induced oxidative stress between Cr-tolerant and wild-type strains of Scenedesmus acutus (Chlorophyceae). , 2006, Aquatic toxicology.

[18]  M. Teague Image analysis via the general theory of moments , 1980 .

[19]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[21]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[22]  Osman Kalender,et al.  Automatic segmentation, counting, size determination and classification of white blood cells , 2014 .

[23]  G. Maya,et al.  Del hemograma manual al hemograma de cuarta generación , 2007 .

[24]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[25]  Li WangDong-Chen He,et al.  Texture classification using texture spectrum , 1990, Pattern Recognit..

[26]  Aishah Salleh,et al.  A preliminary study on automated freshwater algae recognition and classification system , 2012, BMC Bioinformatics.

[27]  Sebastián Sánchez,et al.  Biomass production of Scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium , 2013 .

[28]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[29]  Hamid Soltanian-Zadeh,et al.  Fast opposite weight learning rules with application in breast cancer diagnosis , 2013, Comput. Biol. Medicine.

[30]  Wei Wang,et al.  Enhancement effect of ethanol on lipid and fatty acid accumulation and composition of Scenedesmus sp. , 2013, Bioresource technology.

[31]  Shahriar B. Shokouhi,et al.  Classification of benign and malignant masses based on Zernike moments , 2011, Comput. Biol. Medicine.

[32]  Mogeeb A. A. Mosleh,et al.  Automatic Recognition System for some cyanobacteria using image processing Techniques and ANN approach , 2011 .

[33]  Bertha Olivia Arredondo Vega,et al.  MÉTODOS Y HERRAMIENTAS ANALÍTICAS EN LA EVALUACIÓN DE LA BIOMASA MICROALGAL , 2017 .

[34]  M. Kumagai,et al.  Fluorescence-assisted image analysis of freshwater microalgae. , 2002, Journal of microbiological methods.

[35]  W. S. Rasband,et al.  ImageJ: Image processing and analysis in Java , 2012 .

[36]  Shivani Gupta,et al.  Image Enhancement and Analysis of Microscopic Images using various Image Processing Techniques , 2012 .

[37]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.