Enantiopure laterally functionalized alleno-acetylenic macrocycles: synthesis, chiroptical properties, and self-assembly in aqueous media.

A family of shape-persistent alleno-acetylenic macrocycles (SPAAMs), peripherally decorated with structurally diverse pendant groups, has been synthesized and characterized in enantiomerically pure form. Their electronic circular dichroism (ECD) spectra feature a strong chiroptical response, which is more than two times higher than for open-chain tetrameric analogues. A water-soluble oligo(ethylene glycol)-appended SPAAM undergoes self-assembly in aqueous solution. Morphology studies by cryogenic transmission electron microscopy (cryo-TEM) revealed the formation of aggregates with fibrous fine structures that correspond to tubular, macrocyclic stacks.

[1]  T. Aida,et al.  Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution , 2014 .

[2]  R. Tykwinski,et al.  Chiral Carbon‐rich Macrocycles and Cyclophanes , 2006 .

[3]  F. Diederich,et al.  Molecular Recognition of Pyranosides by a Family of Trimeric, 1,1′‐Binaphthalene‐Derived Cyclophane Receptors , 1998 .

[4]  Ana G. Petrovic,et al.  Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis. , 2010, Chemistry.

[5]  E. W. Meijer,et al.  Chiralitätsverstärkung in dynamischen supramolekularen Aggregaten , 2007 .

[6]  Y. Liu,et al.  Shape-persistent H-bonded macrocyclic aromatic pentamers. , 2013, Chemical communications.

[7]  A. Schlüter,et al.  Shape‐Persistent, Nano‐Sized Macrocycles , 2002 .

[8]  T. Ema Synthetic macrocyclic receptors in chiral analysis and separation , 2012, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[9]  Takashi Sakai,et al.  Versatile and practical macrocyclic reagent with multiple hydrogen-bonding sites for chiral discrimination in NMR. , 2007, Journal of the American Chemical Society.

[10]  F. Diederich,et al.  Enantiopure, monodisperse alleno-acetylenic cyclooligomers: effect of symmetry and conformational flexibility on the chiroptical properties of carbon-rich compounds. , 2011, Chemistry.

[11]  Pablo Rivera-Fuentes,et al.  Amplifikation der Chiralität in monodispersen, enantiomerenreinen Allen‐Acetylen‐Oligomeren , 2010 .

[12]  S. Anderson,et al.  Eine neue Klasse chiraler, von 1,1′‐Binaphthyl abgeleiteter Cyclophan‐Rezeptoren: Komplexierung von Pyranosiden , 1995 .

[13]  R. M. Izatt,et al.  Enantiomeric Recognition of Amine Compounds by Chiral Macrocyclic Receptors. , 1997, Chemical reviews.

[14]  Bing Li,et al.  Harnessing by a diacetylene unit: a molecular design for porous two-dimensional network formation at the liquid/solid interface. , 2014, Chemical communications.

[15]  G. Tew,et al.  Liquid crystalline order from ortho-phenylene ethynylene macrocycles. , 2006, Journal of the American Chemical Society.

[16]  Jeffrey S. Moore,et al.  Synthesis and self-association of an imine-containing m-phenylene ethynylene macrocycle. , 2002, The Journal of organic chemistry.

[17]  Mathieu Leclère,et al.  Asymmetric allenophanes: synthesis of a tris-meta-allenophane and tetrakis-meta-allenophane by sequential cross-coupling. , 2008, Angewandte Chemie.

[18]  F. Diederich,et al.  An enantiomerically pure alleno-acetylenic macrocycle: synthesis and rationalization of its outstanding chiroptical response. , 2009, Angewandte Chemie.

[19]  F. Diederich,et al.  A New Family of Chiral Binaphthyl‐Derived Cyclophane Receptors: Complexation of Pyranosides , 1995 .

[20]  R. M. Kellogg Chirale Makrocyclen als Reagentien und Katalysatoren , 1984 .

[21]  F. Diederich,et al.  Allene in molekularen Materialien , 2012 .

[22]  F. Diederich,et al.  1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional Acetylenic Scaffolding , 2002 .

[23]  S. Gibson,et al.  Amino acid derived macrocycles--an area driven by synthesis or application? , 2006, Angewandte Chemie.

[24]  F. Diederich,et al.  Allenes in molecular materials. , 2012, Angewandte Chemie.

[25]  R. Tykwinski,et al.  Shape‐Persistent Macrocycles Based on Acetylenic Scaffolding , 2008 .

[26]  R. I. Kureshy,et al.  Reusable chiral macrocyclic Mn(III) salen complexes for enantioselective epoxidation of nonfunctionalized alkenes , 2012 .

[27]  A. Navarro‐Vázquez,et al.  Acetylenic Homocoupling Methodology Towards the Synthesis of 1,3‐Butadiynyl Macrocycles: [142]‐Alleno‐Acetylenic Cyclophanes , 2014 .

[28]  Ho-Joong Kim,et al.  Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. , 2011, Accounts of chemical research.

[29]  Pablo Rivera-Fuentes,et al.  Ein enantiomerenreiner alleno‐acetylenischer Makrocyclus: Synthese und Interpretation seiner herausragenden chiroptischen Eigenschaften , 2009 .

[30]  T. Kawase,et al.  8,14,30,36-Tetramethoxy[2.0.2.0](1,6)naphthalenophane-1,19-diyne: a double-helically twisted cyclophane by diastereoselective dimerization. , 2008, Chemistry, an Asian journal.

[31]  D. Pasini,et al.  Structurally-variable, rigid and optically-active D2 and D3 macrocycles possessing recognition properties towards C60. , 2010, Organic & biomolecular chemistry.

[32]  P. Arya,et al.  14-Membered macrocyclic ring-derived toolbox: the identification of small molecule inhibitors of angiogenesis and early embryo development in zebrafish assay. , 2013, Organic letters.

[33]  S. De Feyter,et al.  Supramolecular surface-confined architectures created by self-assembly of triangular phenylene-ethynylene macrocycles via van der Waals interaction. , 2010, Chemical communications.

[34]  N. Casati,et al.  Asymmetric cyclopropanation of olefins catalysed by Cu(I) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*). , 2013, Dalton transactions.

[35]  Matthew D. Clay and,et al.  Acetylenic Allenophanes: An Asymmetric Synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane† , 2005 .

[36]  F. Diederich,et al.  A shape-persistent alleno-acetylenic macrocycle with a modifiable periphery: synthesis, chiroptical properties and H-bond-driven self-assembly into a homochiral columnar structure. , 2013, Chemical communications.

[37]  Susan E. Gibson,et al.  Aminosäurehaltige Makrocyclen – anwendungsnahe Systeme oder nur Syntheseziele? , 2006 .

[38]  Wenbin Lin,et al.  Chiral metallocycles: rational synthesis and novel applications. , 2008, Accounts of chemical research.

[39]  A. Navarro‐Vázquez,et al.  Chiral (2,5)pyrido[7(4)]allenoacetylenic cyclophanes: synthesis and characterization. , 2009, Chemistry.

[40]  M. Iyoda,et al.  Konjugierte Makrocyclen: Konzepte und Anwendungen , 2011 .

[41]  P. Seiler,et al.  Aufbau formstabiler chiraler alleno‐acetylenischer Makrocyclen und Cyclophane über Acetylenkupplungen mit 1,3‐Diethinylallenen , 2005 .

[42]  F. Diederich,et al.  1,3-Diethynylallenes: New Modules for Three-Dimensional Acetylenic Scaffolding. , 2001, Angewandte Chemie.

[43]  F. Diederich,et al.  1,3-Diethynylallenes (DEAs): enantioselective synthesis, absolute configuration, and chiral induction in 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs). , 2008, Chemistry.

[44]  A. Navarro‐Vázquez,et al.  Preparation and characterization of a halogen-bonded shape-persistent chiral alleno-acetylenic inclusion complex. , 2014, Organic letters.

[45]  F. Diederich,et al.  Shape-persistent chiral alleno-acetylenic macrocycles and cyclophanes by acetylenic scaffolding with 1,3-diethynylallenes. , 2005, Angewandte Chemie.

[46]  F. D. De Schryver,et al.  Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. , 2006, Journal of the American Chemical Society.

[47]  A. Navarro‐Vázquez,et al.  Rotation-locked 2,6-pyrido-allenophanes: characterization of all stereoisomers. , 2012, Chemistry.

[48]  Xiaomin Xu,et al.  Conjugated macrocycles of phenanthrene: a new segment of [6,6]-carbon nanotube and solution-processed organic semiconductors , 2013 .

[49]  Jeffrey S. Moore,et al.  Formtreue Makrocyclen: Strukturen und Synthesen aus Arylen‐ und Ethinylen‐Bausteinen , 2006 .

[50]  A. G. Fallis,et al.  Acetylenic allenophanes: an asymmetric synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane. , 2005, Angewandte Chemie.

[51]  E. W. Meijer,et al.  Amplification of chirality in dynamic supramolecular aggregates. , 2007, Angewandte Chemie.

[52]  Jeffrey S. Moore,et al.  Solvophobically Driven π-Stacking of Phenylene Ethynylene Macrocycles and Oligomers , 2000 .

[53]  Jeffrey S. Moore,et al.  Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. , 2006, Angewandte Chemie.

[54]  Jeffrey S. Moore,et al.  Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. , 2003, Chemical communications.

[55]  S. Höger,et al.  Shape-persistent macrocycles: from molecules to materials. , 2004, Chemistry.

[56]  Tetrahydroquinoline-derived macrocyclic toolbox: the discovery of antiangiogenesis agents in zebrafish assay. , 2013, ACS medicinal chemistry letters.

[57]  Yan Liu,et al.  Self-assembly of a homochiral nanoscale metallacycle from a metallosalen complex for enantioselective separation. , 2008, Angewandte Chemie.

[58]  B. Rybtchinski,et al.  Noncovalent water-based materials: robust yet adaptive. , 2011, Chemistry.

[59]  M. Haley,et al.  Carbon-Rich Compounds: From Molecules to Materials , 2006 .

[60]  T. Quinn,et al.  Aza-crown macrocycles as chiral solvating agents for mandelic acid derivatives. , 2011, The Journal of organic chemistry.

[61]  T. Kawase Allenophane and allenoacetylenic macrocycles: a new class of chiral cyclophanes. , 2005, Angewandte Chemie.

[62]  P. Anzenbacher,et al.  Selective anion sensing by chiral macrocyclic receptors with multiple hydrogen-bonding sites. , 2014, Organic Letters.

[63]  Ana G. Petrovic,et al.  Amplification of chirality in monodisperse, enantiopure alleno-acetylenic oligomers. , 2010, Angewandte Chemie.

[64]  M. Iyoda,et al.  Conjugated macrocycles: concepts and applications. , 2011, Angewandte Chemie.

[65]  Takeshi Kawase Allenophan‐ und Allenoacetylen‐Makrocyclen: eine neue Klasse chiraler Cyclophane , 2005 .

[66]  R. Kellogg Chiral Macrocycles as Reagents and Catalysts , 1984 .