Study of coffee sensory attributes by ordered predictors selection applied to 1H NMR spectroscopy

[1]  R. C. Guarçoni,et al.  Chemical and sensory discrimination of coffee: impacts of the planting altitude and fermentation , 2021, European Food Research and Technology.

[2]  R. C. Guarçoni,et al.  Multivariate calibration applied to study of volatile predictors of arabica coffee quality. , 2021, Food chemistry.

[3]  P. Valderrama,et al.  Integrated 1H NMR fingerprint with NIR spectroscopy, sensory properties, and quality parameters in a multi-block data analysis using ComDim to evaluate coffee blends. , 2021, Food chemistry.

[4]  E. R. Castro,et al.  Particle swarm optimization and ordered predictors selection applied in NMR to predict crude oil properties , 2020 .

[5]  Tomás Gomes Reis Veloso,et al.  Microbial fermentation affects sensorial, chemical, and microbial profile of coffee under carbonic maceration. , 2020, Food chemistry.

[6]  C. T. ten Caten,et al.  New propositions about coffee wet processing: Chemical and sensory perspectives. , 2019, Food chemistry.

[7]  R. Teófilo,et al.  Comprehensive new approaches for variable selection using ordered predictors selection. , 2019, Analytica chimica acta.

[8]  W. F. Rocha,et al.  Determination of physicochemical properties of petroleum derivatives and biodiesel using GC/MS and chemometric methods with uncertainty estimation. , 2019, Fuel.

[9]  Lucas Louzada Pereira,et al.  Very beyond subjectivity: The limit of accuracy of Q-Graders. , 2019, Journal of texture studies.

[10]  R. Consonni,et al.  Organic and conventional coffee differentiation by NMR spectroscopy , 2018, Food Control.

[11]  R. Teófilo,et al.  Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods. , 2018, Talanta.

[12]  Alessandro Rangel Carolino Sales Silva,et al.  Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods. , 2018, Food chemistry.

[13]  L. Pezza,et al.  Fingerprint and authenticity roasted coffees by 1H-NMR: the Brazilian coffee case , 2018, Food Science and Biotechnology.

[14]  R. Teófilo,et al.  Multivariate Calibration to Determine Phorbol Esters in Seeds of Jatropha curcas L. Using Near Infrared and Ultraviolet Spectroscopies , 2017 .

[15]  L. Pezza,et al.  Authenticity of roasted coffee using1H NMR spectroscopy , 2017 .

[16]  S. O. Ferreira,et al.  Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods. , 2017, Carbohydrate polymers.

[17]  A. Olivieri,et al.  Multi-way figures of merit in the presence of heteroscedastic and correlated instrumental noise: Unfolded partial least-squares with residual multi-linearization , 2016 .

[18]  L. Duarte,et al.  Determination of some physicochemical properties in Brazilian crude oil by 1H NMR spectroscopy associated to chemometric approach , 2016 .

[19]  Ronei J. Poppi,et al.  Determination of Saturates, Aromatics, and Polars in Crude Oil by 13C NMR and Support Vector Regression with Variable Selection by Genetic Algorithm , 2016 .

[20]  M. Tanokura,et al.  A pilot study of NMR-based sensory prediction of roasted coffee bean extracts. , 2014, Food chemistry.

[21]  R. Poppi,et al.  Evaluation of trends in residuals of multivariate calibration models by permutation test , 2014 .

[22]  D. Lachenmeier,et al.  Qualitative and Quantitative Control of Honeys Using NMR Spectroscopy and Chemometrics , 2013 .

[23]  J. S. Ribeiro,et al.  Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics. , 2012, Talanta.

[24]  M. Tanokura,et al.  (13)C NMR-based metabolomics for the classification of green coffee beans according to variety and origin. , 2012, Journal of agricultural and food chemistry.

[25]  D. Lachenmeier,et al.  Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy , 2012, Journal of agricultural and food chemistry.

[26]  D. Lachenmeier,et al.  Nontargeted NMR Analysis To Rapidly Detect Hazardous Substances in Alcoholic Beverages , 2012 .

[27]  J. S. Ribeiro,et al.  Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. , 2011, Talanta.

[28]  Rasmus Bro,et al.  Variable selection in regression—a tutorial , 2010 .

[29]  Feifei Wei,et al.  Complex mixture analysis of organic compounds in green coffee bean extract by two‐dimensional NMR spectroscopy , 2010, Magnetic resonance in chemistry : MRC.

[30]  F Savorani,et al.  icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. , 2010, Journal of magnetic resonance.

[31]  Frans van den Berg,et al.  Review of the most common pre-processing techniques for near-infrared spectra , 2009 .

[32]  J. S. Ribeiro,et al.  Prediction of sensory properties of Brazilian Arabica roasted coffees by headspace solid phase microextraction-gas chromatography and partial least squares. , 2009, Analytica chimica acta.

[33]  R. Teófilo,et al.  Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression , 2009 .

[34]  Patrícia Valderrama,et al.  Variable selection, outlier detection, and figures of merit estimation in a partial least-squares regression multivariate calibration model. A case study for the determination of quality parameters in the alcohol industry by near-infrared spectroscopy. , 2007, Journal of agricultural and food chemistry.

[35]  S. Lanteri,et al.  Selection of useful predictors in multivariate calibration , 2004, Analytical and bioanalytical chemistry.

[36]  Roberto A. Buffo,et al.  Coffee flavour: an overview , 2004 .

[37]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[38]  Hilko van der Voet,et al.  Comparing the predictive accuracy of models using a simple randomization test , 1994 .

[39]  L. A. Stone,et al.  Computer Aided Design of Experiments , 1969 .

[40]  L. Lim,et al.  Coffee: One of the Most Consumed Beverages in the World , 2019 .

[41]  Jee-Hyun Cho,et al.  Assessment of green coffee bean metabolites dependent on coffee quality using a 1H NMR-based metabolomics approach , 2015 .

[42]  Márcia M. C. Ferreira,et al.  QSAR modeling: um novo pacote computacional open source para gerar e validar modelos QSAR , 2013 .

[43]  Richard G. Brereton,et al.  Introduction to multivariate calibration in analytical chemistry , 2000 .