Nonreciprocal Wavefront Engineering with Time-Modulated Gradient Metasurfaces

Author(s): Zang, JW; Correas-Serrano, D; Do, JTS; Liu, X; Alvarez-Melcon, A; Gomez-Diaz, JS | Abstract: © 2019 American Physical Society. We propose a paradigm to realize nonreciprocal wavefront engineering using time-modulated gradient metasurfaces. The essential building block of these surfaces is a subwavelength unit cell whose reflection coefficient oscillates at low frequency. We demonstrate theoretically and experimentally that such modulation permits tailoring the phase and amplitude of any desired nonlinear harmonic and determines the behavior of all other emerging fields. By appropriately adjusting the phase delay applied to the modulation of each unit cell, we realize time-modulated gradient metasurfaces that provide efficient conversion between two desired frequencies and enable nonreciprocity by (i) imposing drastically different phase gradients during the up/down conversion processes and (ii) exploiting the interplay between the generation of certain nonlinear surface and propagative waves. To demonstrate the performance and broad reach of the proposed platform, we design and analyze metasurfaces able to implement various functionalities, including beam steering and focusing, while exhibiting strong and angle-insensitive nonreciprocal responses. Our findings open an alternative direction in the field of gradient metasurfaces, in which wavefront control and magnetic-free nonreciprocity are locally merged to manipulate the scattered fields.

[1]  Dimitrios Peroulis,et al.  Isolating Bandpass Filters Using Time-Modulated Resonators , 2019, IEEE Transactions on Microwave Theory and Techniques.

[2]  Qiang Cheng,et al.  Space-time-coding digital metasurfaces , 2018, Nature Communications.

[3]  Andrea Alù,et al.  Magnetic-free nonreciprocal photonic platform based on time-modulated graphene capacitors , 2018, Physical Review B.

[4]  S. Tretyakov,et al.  Electromagnetic Nonreciprocity , 2018, Physical Review Applied.

[5]  Ilya V. Shadrivov,et al.  Huygens’ Metadevices for Parametric Waves , 2018, Physical Review X.

[6]  Qian Wang,et al.  Tunable and reconfigurable metasurfaces and metadevices , 2018 .

[7]  Christophe Caloz,et al.  What is Nonreciprocity , 2018, 1804.00235.

[8]  Andrea Alù,et al.  Broadband passive isolators based on coupled nonlinear resonances , 2018 .

[9]  H. Mosallaei,et al.  Electrically tunable harmonics in time-modulated metasurfaces for wavefront engineering , 2018, New Journal of Physics.

[10]  T. Kippenberg,et al.  Nonreciprocal reconfigurable microwave optomechanical circuit , 2016, Nature Communications.

[11]  A. Alú,et al.  Non-reciprocal photonics based on time modulation , 2017 .

[12]  Christophe Caloz,et al.  Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator , 2017, 1705.06311.

[13]  D. Sounas,et al.  Static non-reciprocity in mechanical metamaterials , 2017, Nature.

[14]  C. Caloz,et al.  Mixer-Duplexer-Antenna Leaky-Wave System Based on Periodic Space-Time Modulation , 2016, IEEE Transactions on Antennas and Propagation.

[15]  Christophe Caloz,et al.  Optical Isolation based on Space-time Engineered Asymmetric Photonic Bandgaps , 2016, 1612.08398.

[16]  M. Miri,et al.  Fundamentals of optical non-reciprocity based on optomechanical coupling , 2016, 1612.07375.

[17]  A. Alú,et al.  Wave-front Transformation with Gradient Metasurfaces , 2016 .

[18]  Ariel Epstein,et al.  Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection. , 2016, Physical review letters.

[19]  S. Tcvetkova,et al.  Perfect control of reflection and refraction using spatially dispersive metasurfaces , 2016, 1605.02044.

[20]  Andrea Alù,et al.  Ultrathin Gradient Nonlinear Metasurface with a Giant Nonlinear Response , 2016 .

[21]  Jason Soric,et al.  Breaking temporal symmetries for emission and absorption , 2016, Proceedings of the National Academy of Sciences.

[22]  Andrea Alù,et al.  Recent progress in gradient metasurfaces , 2016 .

[23]  Dimitrios L. Sounas,et al.  Magnetless Microwave Circulators Based on Spatiotemporally Modulated Rings of Coupled Resonators , 2016, IEEE Transactions on Microwave Theory and Techniques.

[24]  Swen Kortig,et al.  Foundations For Microwave Engineering , 2016 .

[25]  A. Alvarez-Melcon,et al.  Nonreciprocal Graphene Devices and Antennas Based on Spatiotemporal Modulation , 2016, IEEE Antennas and Wireless Propagation Letters.

[26]  Andrea Alù,et al.  Gradient Nonlinear Pancharatnam-Berry Metasurfaces. , 2015, Physical review letters.

[27]  Y. Wang,et al.  An ultrathin invisibility skin cloak for visible light , 2015, Science.

[28]  V. Shalaev,et al.  Time-Varying Metasurfaces and Lorentz Non-Reciprocity , 2015, 1507.04836.

[29]  A. Alú,et al.  Space-time gradient metasurfaces , 2015, 1506.00690.

[30]  Zongfu Yu,et al.  Limitations of nonlinear optical isolators due to dynamic reciprocity , 2015, Nature Photonics.

[31]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[32]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .

[33]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[34]  J. S. Gomez-Diaz,et al.  Self-biased reconfigurable graphene stacks for terahertz plasmonics , 2014, Nature Communications.

[35]  George V. Eleftheriades,et al.  Optical Huygens' Metasurfaces with Independent Control of the Magnitude and Phase of the Local Reflection Coefficients , 2014 .

[36]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[37]  R. Fleury,et al.  Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator , 2014, Science.

[38]  Sean Victor Hum,et al.  Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review , 2013, IEEE Transactions on Antennas and Propagation.

[39]  C. Pfeiffer,et al.  Millimeter-Wave Transmitarrays for Wavefront and Polarization Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[40]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[41]  C. Pfeiffer,et al.  Cascaded metasurfaces for complete phase and polarization control , 2013 .

[42]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[43]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[44]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[45]  N. Zheludev,et al.  Sub-wavelength focusing meta-lens. , 2012, Optics express.

[46]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[47]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[48]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[49]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[50]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[51]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[52]  N. Behdad,et al.  Wideband Planar Microwave Lenses Using Sub-Wavelength Spatial Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[53]  Ke Wu,et al.  Review of substrate-integrated waveguide circuits and antennas , 2011 .

[54]  A. Alú,et al.  Mantle cloak: Invisibility induced by a surface , 2009 .

[55]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2008, OPTO.

[56]  N. Engheta,et al.  Thin absorbing screens using metamaterial surfaces , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[57]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[58]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[59]  C. F. Kurth,et al.  Steady-state analysis of sinusoidal time-variant networks applied to equivalent circuits for transmission networks , 1977 .

[60]  Arthur A. Oliner,et al.  Phased array antennas , 1972 .

[61]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[62]  R. Collin Foundations for microwave engineering , 1966 .

[63]  P. Hannan,et al.  Simulation of a phased-array antenna in waveguide , 1965 .

[64]  H. B. G. Casimir,et al.  On Onsager's Principle of Microscopic Reversibility , 1945 .