Optimal high-level descriptions of dynamical systems

To analyze high-dimensional systems, many fields in science and engineering rely on high-level descriptions, sometimes called "macrostates," "coarse-grainings," or "effective theories". Examples of such descriptions include the thermodynamic properties of a large collection of point particles undergoing reversible dynamics, the variables in a macroeconomic model describing the individuals that participate in an economy, and the summary state of a cell composed of a large set of biochemical networks. Often these high-level descriptions are constructed without considering the ultimate reason for needing them in the first place. Here, we formalize and quantify one such purpose: the need to predict observables of interest concerning the high-dimensional system with as high accuracy as possible, while minimizing the computational cost of doing so. The resulting State Space Compression (SSC) framework provides a guide for how to solve for the {optimal} high-level description of a given dynamical system, rather than constructing it based on human intuition alone. In this preliminary report, we introduce SSC, and illustrate it with several information-theoretic quantifications of "accuracy", all with different implications for the optimal compression. We also discuss some other possible applications of SSC beyond the goal of accurate prediction. These include SSC as a measure of the complexity of a dynamical system, and as a way to quantify information flow between the scales of a system.

[1]  Munther A. Dahleh,et al.  Balanced Truncation for a Class of Stochastic Jump Linear Systems and Model Reduction for Hidden Markov Models , 2008, IEEE Transactions on Automatic Control.

[2]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[3]  C. Moore,et al.  What Is a Macrostate? Subjective Observations and Objective Dynamics , 2003, cond-mat/0303625.

[4]  Abhijit Banerjee,et al.  Gossip: Identifying Central Individuals in a Social Network , 2014, ArXiv.

[5]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[6]  Simon DeDeo,et al.  Major Transitions in Political Order , 2015, ArXiv.

[7]  Simon Dedeo,et al.  Effective Theories for Circuits and Automata , 2011, Chaos.

[8]  F. Radicchi,et al.  Complex networks renormalization: flows and fixed points. , 2008, Physical review letters.

[9]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[10]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[11]  BaiZhaojun Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[12]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[13]  Robert Zwanzig,et al.  Problems in nonlinear transport theory , 1980 .

[14]  Javier M. Buldú,et al.  Functional brain networks: great expectations, hard times and the big leap forward , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[16]  Ivar Ekeland,et al.  New Developments in Aggregation Economics , 2011 .

[17]  Bart Deplancke,et al.  Gene Regulatory Networks , 2012, Methods in Molecular Biology.

[18]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[19]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[20]  Venkataramanan Balakrishnan,et al.  Efficient balance-and-truncate model reduction for large scale systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[21]  A. U.S.,et al.  Predictability , Complexity , and Learning , 2002 .

[22]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[23]  I. Couzin Collective cognition in animal groups , 2009, Trends in Cognitive Sciences.

[24]  N. Goldenfeld,et al.  Coarse-graining of cellular automata, emergence, and the predictability of complex systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  James P. Crutchfield,et al.  Information Bottlenecks, Causal States, and Statistical Relevance Bases: How to Represent Relevant Information in memoryless transduction , 2000, Adv. Complex Syst..

[26]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[27]  Salem Derisavi A Symbolic Algorithm for Optimal Markov Chain Lumping , 2007, TACAS.

[28]  Mingzhou Ding,et al.  Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance , 2001, Biological Cybernetics.

[29]  Marissa G. Saunders,et al.  Coarse-graining methods for computational biology. , 2013, Annual review of biophysics.

[30]  Simon DeDeo Group Minds and the Case of Wikipedia , 2014, Hum. Comput..

[31]  James P. Crutchfield,et al.  Circumventing the Curse of Dimensionality in Prediction: Causal Rate-Distortion for Infinite-Order Markov Processes , 2014, ArXiv.

[32]  D. Krakauer Darwinian demons, evolutionary complexity, and information maximization. , 2011, Chaos.

[33]  Shizume Heat generation required by information erasure. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  David H. Wolpert,et al.  Self-dissimilarity: an empirically observable complexity measure , 2000 .

[35]  Robert E. Mahony,et al.  Lumpable hidden Markov models-model reduction and reduced complexity filtering , 2000, IEEE Trans. Autom. Control..

[36]  Matthew O. Jackson,et al.  Gossip: Identifying Central Individuals in a Social Network , 2016 .

[37]  Daniel Polani,et al.  Information Flows in Causal Networks , 2008, Adv. Complex Syst..

[38]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[39]  K. Wiesner,et al.  What is a complex system? , 2012, European Journal for Philosophy of Science.

[40]  P. Davies,et al.  The epigenome and top-down causation , 2012, Interface Focus.

[41]  Rolf Landauer,et al.  Energy requirements in communication , 1987 .

[42]  Lloyd Use of mutual information to decrease entropy: Implications for the second law of thermodynamics. , 1989, Physical review. A, General physics.

[43]  Nicholas J. Guido,et al.  A bottom-up approach to gene regulation , 2006, Nature.

[44]  Brian Munsky,et al.  The Finite State Projection Approach for the Analysis of Stochastic Noise in Gene Networks , 2008, IEEE Transactions on Automatic Control.

[45]  Mikhail Prokopenko,et al.  On Thermodynamic Interpretation of Transfer Entropy , 2013, Entropy.

[46]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[47]  Simon DeDeo,et al.  Dynamics and processing in finite self-similar networks , 2011, Journal of The Royal Society Interface.

[48]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[49]  Kun Deng,et al.  Model reduction of Markov chains with applications to building systems , 2012 .

[50]  M. Jackson,et al.  Social Capital and Social Quilts: Network Patterns of Favor Exchange , 2011 .

[51]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[52]  R. Landauer The physical nature of information , 1996 .

[53]  Andrea Cavagna,et al.  Information transfer and behavioural inertia in starling flocks , 2013, Nature Physics.

[54]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..

[55]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[56]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[57]  Naftali Tishby,et al.  Past-future information bottleneck in dynamical systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[59]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2008, SIAM J. Comput..

[60]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[61]  Daniel A. Jiménez Improved latency and accuracy for neural branch prediction , 2005, TOCS.

[62]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[63]  Marko Bajec,et al.  Self-similar scaling of density in complex real-world networks , 2011, ArXiv.

[64]  Rolf Landauer,et al.  Minimal Energy Requirements in Communication , 1996, Science.

[65]  D. E. Aspnes,et al.  Static Phenomena Near Critical Points: Theory and Experiment , 1967 .

[66]  Sanjay Lall,et al.  Error-bounds for balanced model-reduction of linear time-varying systems , 2003, IEEE Trans. Autom. Control..

[67]  K-I Goh,et al.  Skeleton and fractal scaling in complex networks. , 2006, Physical review letters.

[68]  C. Shalizi,et al.  Causal architecture, complexity and self-organization in time series and cellular automata , 2001 .

[69]  Robert Shaw,et al.  The Dripping Faucet As A Model Chaotic System , 1984 .

[70]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[71]  Uri Alon,et al.  Coarse-graining and self-dissimilarity of complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[73]  W. Bialek,et al.  Statistical mechanics for natural flocks of birds , 2011, Proceedings of the National Academy of Sciences.

[74]  Mikko Alava,et al.  Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.

[75]  L. Goddard Information Theory , 1962, Nature.

[76]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[77]  Karoline Wiesner,et al.  Information-theoretic lower bound on energy cost of stochastic computation , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[78]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[79]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Mikhail Prokopenko,et al.  Transfer Entropy and Transient Limits of Computation , 2014, Scientific Reports.

[81]  James P. Crutchfield,et al.  Equations of Motion from a Data Series , 1987, Complex Syst..

[82]  A. Chorin,et al.  Stochastic Tools in Mathematics and Science , 2005 .

[83]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[84]  Andrea Montanari,et al.  The spread of innovations in social networks , 2010, Proceedings of the National Academy of Sciences.

[85]  Pierre Auger,et al.  Aggregation methods in dynamical systems and applications in population and community dynamics , 2008 .

[86]  John Maynard Smith,et al.  Time in the evolutionary process. , 1970, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden.

[87]  Clarence W. Rowley,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry: Preface to the first edition , 2012 .

[88]  D. Sorensen,et al.  Approximation of large-scale dynamical systems: an overview , 2004 .

[89]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[90]  Jeff S. Shamma,et al.  A fundamental limitation to the reduction of Markov chains via aggregation , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[91]  Daniel N. Rockmore,et al.  Intelligent Data Analysis of Intelligent Systems , 2010, IDA.

[92]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[93]  Eric Lutz,et al.  Comment on "Minimal energy cost for thermodynamic information processing: measurement and information erasure". , 2010, Physical review letters.

[94]  John Maynard Smith,et al.  The Concept of Information in Biology , 2000, Philosophy of Science.

[95]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[96]  Susanne Still,et al.  Optimal causal inference: estimating stored information and approximating causal architecture. , 2007, Chaos.

[97]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[98]  H. V. D. Vorst,et al.  Model Order Reduction: Theory, Research Aspects and Applications , 2008 .

[99]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[100]  M. N. Jacobi,et al.  A dual eigenvector condition for strong lumpability of Markov chains , 2007, 0710.1986.

[101]  Olof Görnerup,et al.  A Method for Inferring Hierarchical Dynamics in Stochastic Processes , 2007, Adv. Complex Syst..

[102]  Neo D. Martinez,et al.  Food webs: reconciling the structure and function of biodiversity. , 2012, Trends in ecology & evolution.

[103]  Sara Imari Walker,et al.  Evolutionary Transitions and Top-Down Causation , 2012, 1207.4808.

[104]  Sanjay Lall,et al.  Model reduction, optimal prediction, and the Mori-Zwanzig representation of Markov chains , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[105]  James Odell,et al.  Between order and chaos , 2011, Nature Physics.

[106]  Jeff S. Shamma,et al.  A counterexample to aggregation based model reduction of Hidden Markov Models , 2011, IEEE Conference on Decision and Control and European Control Conference.

[107]  Olof Görnerup,et al.  A Method for Finding Aggregated Representations of Linear Dynamical Systems , 2010, Adv. Complex Syst..

[108]  David H. Wolpert,et al.  Using self-dissimilarity to quantify complexity , 2007, Complex..

[109]  Erika Ábrahám,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2014, Lecture Notes in Computer Science.

[110]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[111]  W. Holcombe Algebraic Automata Theory , 1982 .

[112]  Marek Kimmel,et al.  Branching processes in biology , 2002 .

[113]  J. Krakauer,et al.  Error correction, sensory prediction, and adaptation in motor control. , 2010, Annual review of neuroscience.

[114]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[115]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[116]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[117]  Susanne Still,et al.  Information Bottleneck Approach to Predictive Inference , 2014, Entropy.

[118]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[119]  A. Clark Whatever next? Predictive brains, situated agents, and the future of cognitive science. , 2013, The Behavioral and brain sciences.

[120]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[121]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[122]  Navot Israeli,et al.  Computational irreducibility and the predictability of complex physical systems. , 2004, Physical review letters.

[123]  Eckehard Olbrich,et al.  Comparison between Different Methods of Level Identification , 2014, Adv. Complex Syst..

[124]  Anders Rantzer,et al.  Balanced Truncation for Discrete Time Markov Jump Linear Systems , 2010, IEEE Transactions on Automatic Control.