CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design

The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) level 3 aerosol profile product reports globally gridded, quality-screened, monthly mean aerosol extinction profiles retrieved by CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization). This paper describes the quality screening and averaging methods used to generate the version 3 product. The fundamental input data are CALIOP level 2 aerosol extinction profiles and layer classification information (aerosol, cloud, and clear-air). Prior to aggregation, the extinction profiles are quality-screened by a series of filters to reduce the impact of layer detection errors, layer classification errors, extinction retrieval errors, and biases due to an intermittent signal anomaly at the surface. The relative influence of these filters are compared in terms of sample rejection frequency, mean extinction, and mean aerosol optical depth (AOD). The “extinction QC flag” filter is the most influential in preventing high-biases in level 3 mean extinction, while the “misclassified cirrus fringe” filter is most aggressive at rejecting cirrus misclassified as aerosol. The impact of quality screening on monthly mean aerosol extinction is investigated globally and regionally. After applying quality filters, the level 3 algorithm calculates monthly mean AOD by vertically integrating the monthly mean quality-screened aerosol extinction profile. Calculating monthly mean AOD by integrating the monthly mean extinction profile prevents a low bias that would result from alternately integrating the set of extinction profiles first and then averaging the resultant AOD values together. Ultimately, the quality filters reduce level 3 mean AOD by −24 and −31% for global ocean and global land, respectively, indicating the importance of quality screening.

[1]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[2]  T. Storelvmo,et al.  Spaceborne lidar observations of the ice‐nucleating potential of dust, polluted dust, and smoke aerosols in mixed‐phase clouds , 2014 .

[3]  Jonathon S. Wright,et al.  Relationships between convective structure and transport of aerosols to the upper troposphere deduced from satellite observations , 2015 .

[4]  David M. Winker,et al.  Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua , 2011 .

[5]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[6]  Yaoming Ma,et al.  The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau , 2015 .

[7]  Qiang Fu,et al.  CALIPSO‐inferred aerosol direct radiative effects: Bias estimates using ground‐based Raman lidars , 2015 .

[8]  Nickolay A. Krotkov,et al.  Likely seeding of cirrus clouds by stratospheric Kasatochi volcanic aerosol particles near a mid-latitude tropopause fold , 2012 .

[9]  Renmin Yuan,et al.  Lidar-based remote sensing of atmospheric boundary layer height over land and ocean , 2013 .

[10]  David M. Winker,et al.  Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations , 2010 .

[11]  David M. Winker,et al.  The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance , 2009 .

[12]  Jens Redemann,et al.  The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth , 2011 .

[13]  Mikhail Sofiev,et al.  Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions , 2013 .

[14]  G. Mace,et al.  Evaluation of the Hydrometeor Layers in the East and West Pacific within ISCCP Cloud-Top Pressure–Optical Depth Bins Using Merged CloudSat and CALIPSO Data , 2013 .

[15]  W. Collins,et al.  Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results , 2012 .

[16]  Jianglong Zhang,et al.  Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products. , 2017, Atmospheric measurement techniques.

[17]  David M. Winker,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error Sensitivity Analyses , 2013 .

[18]  A. Ansmann,et al.  Optimizing CALIPSO Saharan dust retrievals , 2013 .

[19]  B. Holben,et al.  An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study , 2011 .

[20]  A. Clarke,et al.  A Pacific Aerosol Survey. Part I: A Decade of Data on Particle Production, Transport, Evolution, and Mixing in the Troposphere* , 2002 .

[21]  K. Bedka,et al.  Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution , 2015, Journal of geophysical research. Atmospheres : JGR.

[22]  A. Sturman,et al.  A global satellite view of the seasonal distribution of mineral dust and its correlation with atmospheric circulation , 2014 .

[23]  Ellsworth J. Welton,et al.  Evaluating nighttime CALIOP 0.532 μm aerosol optical depth and extinction coefficient retrievals , 2012 .

[24]  Thomas Trickl,et al.  The Untold Story of Pyrocumulonimbus , 2010 .

[25]  Tianle Yuan,et al.  Aerosols from Overseas Rival Domestic Emissions over North America , 2012, Science.

[26]  Yoram J. Kaufman,et al.  On the twilight zone between clouds and aerosols , 2007 .

[27]  D. Winker,et al.  Strategies for Improved CALIPSO Aerosol Optical Depth Estimates , 2010 .

[28]  D. Winker,et al.  Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements , 2012 .

[29]  David M. Winker,et al.  Investigating enhanced Aqua MODIS aerosol optical depth retrievals over the mid‐to‐high latitude Southern Oceans through intercomparison with co‐located CALIOP, MAN, and AERONET data sets , 2013 .

[30]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[31]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[32]  M. Todd,et al.  Dust aerosol emission over the Sahara during summertime from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations , 2016 .

[33]  Xiaoyan Ma,et al.  Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? , 2016 .

[34]  J. Kar,et al.  CALIPSO detection of an Asian tropopause aerosol layer , 2011 .

[35]  K. Stamnes,et al.  CALIPSO/CALIOP Cloud Phase Discrimination Algorithm , 2009 .

[36]  K. Froyd,et al.  Aerosols that form subvisible cirrus at the tropical tropopause , 2010 .

[37]  Zhaoyan Liu,et al.  Quantifying the low bias of CALIPSO's column aerosol optical depth due to undetected aerosol layers , 2017, Journal of geophysical research. Atmospheres : JGR.

[38]  Y. Qi,et al.  Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective , 2014 .

[39]  Jens Redemann,et al.  An evaluation of CALIOP/CALIPSO's aerosol‐above‐cloud detection and retrieval capability over North America , 2014 .

[40]  M. Chin,et al.  Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results , 2016, Journal of geophysical research. Atmospheres : JGR.

[41]  R. Fu,et al.  Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5‐year observations , 2013, Journal of Geophysical Research: Atmospheres.

[42]  T. Noije,et al.  Global fine-mode aerosol radiative effect, as constrained by comprehensiveobservations , 2016 .

[43]  S. S. Prijith,et al.  Global aerosol source/sink map , 2013 .

[44]  P. Zuidema,et al.  The Convolution of Dynamics and Moisture with the Presence of Shortwave Absorbing Aerosols over the Southeast Atlantic , 2015 .

[45]  E. Welton,et al.  Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period , 2016 .

[46]  Nobuo Sugimoto,et al.  Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds–East Asia Regional Experiment 2005 , 2007 .

[47]  Albert Ansmann,et al.  Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset , 2017 .

[48]  David M. Winker,et al.  The global 3-D distribution of tropospheric aerosols as characterized by CALIOP , 2012 .

[49]  A. Scott Denning,et al.  Global seasonal variations of midday planetary boundary layer depth from CALIPSO space‐borne LIDAR , 2013 .

[50]  Slobodan Nickovic,et al.  Saharan dust and ice nuclei over Central Europe , 2010 .

[51]  D. Winker,et al.  CALIPSO Lidar Description and Performance Assessment , 2009 .

[52]  D. Winker,et al.  Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data , 2014 .

[53]  S. S. Prijith,et al.  Elevated aerosols and role of circulation parameters in aerosol vertical distribution , 2016 .