Experimental and numerical research on condenser performance for R-22 and R-407C refrigerants

Abstract An experimental study of a fin and tube condenser was performed using two different configurations of condenser paths (U and Z type) and two kinds of refrigerants (R-22 and R-407C) as working fluids. An integral test facility was constructed to evaluate the heat transfer capacity of the air and refrigerant sides of the condenser. An uncertainty study was also performed. A numerical code was developed, using a section-by-section analysis scheme in which mal-distribution on the air side and temperature gliding on the refrigerant side could be considered along the tube-length direction. Different condenser capacities were obtained from both the experimental and numerical results, depending on the paths and refrigerants used. R-22 performed better than R-407C for the Z-type path configuration, but no significant difference was found between results using either refrigerant in the U-type path configuration. On average, the numerical results obtained with R-22 were 10.1% greater than experiment data; using R-407C, results were 10.7% less than experiment data. The numerical code can be used as a design tool to develop better condenser paths.