BASE: a practical de novo assembler for large genomes using long NGS reads

[1]  Jue Ruan,et al.  DBG2OLC: Efficient Assembly of Large Genomes Using the Compressed Overlap Graph , 2015 .

[2]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[3]  Masahiro Kasahara,et al.  Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes , 2014, BMC Genomics.

[4]  Tak Wah Lam,et al.  GPU-Accelerated BWT Construction for Large Collection of Short Reads , 2014, ArXiv.

[5]  David Hernández,et al.  De novo finished 2.8 Mbp Staphylococcus aureus genome assembly from 100 bp short and long range paired-end reads , 2014, Bioinform..

[6]  Steven Salzberg,et al.  GAGE-B: an evaluation of genome assemblers for bacterial organisms , 2013, Bioinform..

[7]  Inanç Birol,et al.  Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species , 2013, GigaScience.

[8]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[9]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[10]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[11]  Heng Li,et al.  Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly , 2012, Bioinform..

[12]  R. Durbin,et al.  Efficient de novo assembly of large genomes using compressed data structures. , 2012, Genome research.

[13]  Nan Li,et al.  Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. , 2012, Briefings in functional genomics.

[14]  S. Kurtz,et al.  Readjoiner: a fast and memory efficient string graph-based sequence assembler , 2012, BMC Bioinformatics.

[15]  M. Frith,et al.  Adaptive seeds tame genomic sequence comparison. , 2011, Genome research.

[16]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[17]  Siu-Ming Yiu,et al.  High Throughput Short Read Alignment via Bi-directional BWT , 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine.

[18]  Eugene W. Myers,et al.  The fragment assembly string graph , 2005, ECCB/JBI.

[19]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[20]  E. Lander,et al.  Genomic mapping by fingerprinting random clones: a mathematical analysis. , 1988, Genomics.