Self-adaptive gradient projection algorithms for variational inequalities involving non-Lipschitz continuous operators

AbstractIn this paper, we introduce a self-adaptive inertial gradient projection algorithm for solving monotone or strongly pseudomonotone variational inequalities in real Hilbert spaces. The algorithm is designed such that the stepsizes are dynamically chosen and its convergence is guaranteed without the Lipschitz continuity and the paramonotonicity of the underlying operator. We will show that the proposed algorithm yields strong convergence without being combined with the hybrid/viscosity or linesearch methods. Our results improve and develop previously discussed gradient projection-type algorithms by Khanh and Vuong (J. Global Optim. 58, 341–350 2014).

[1]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[2]  H. Attouch,et al.  Asymptotic Control and Stabilization of Nonlinear Oscillators with Non-isolated Equilibria , 2002 .

[3]  C. S. Lalitha,et al.  Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization , 2013 .

[4]  Yu. V. Malitsky,et al.  An Extragradient Algorithm for Monotone Variational Inequalities , 2014 .

[5]  A. Moudafi,et al.  Convergence of a splitting inertial proximal method for monotone operators , 2003 .

[6]  Alfredo N. Iusem,et al.  Convergence of direct methods for paramonotone variational inequalities , 2010, Comput. Optim. Appl..

[7]  Yu. V. Malitsky,et al.  Projected Reflected Gradient Methods for Monotone Variational Inequalities , 2015, SIAM J. Optim..

[8]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[9]  A. Iusem,et al.  A variant of korpelevich’s method for variational inequalities with a new search strategy , 1997 .

[10]  Andrzej Cegielski,et al.  An Algorithm for Solving the Variational Inequality Problem Over the Fixed Point Set of a Quasi-Nonexpansive Operator in Euclidean Space , 2013, 1304.0690.

[11]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[12]  Phan Tu Vuong,et al.  Modified projection method for strongly pseudomonotone variational inequalities , 2014, J. Glob. Optim..

[13]  P. Maingé Convergence theorems for inertial KM-type algorithms , 2008 .

[14]  L. Popov A modification of the Arrow-Hurwicz method for search of saddle points , 1980 .

[15]  Yair Censor,et al.  The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space , 2011, J. Optim. Theory Appl..

[16]  H. Attouch,et al.  THE HEAVY BALL WITH FRICTION METHOD, I. THE CONTINUOUS DYNAMICAL SYSTEM: GLOBAL EXPLORATION OF THE LOCAL MINIMA OF A REAL-VALUED FUNCTION BY ASYMPTOTIC ANALYSIS OF A DISSIPATIVE DYNAMICAL SYSTEM , 2000 .

[17]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[18]  Trinh Ngoc Hai,et al.  Two new splitting algorithms for equilibrium problems , 2017 .

[19]  I. Konnov Equilibrium Models and Variational Inequalities , 2013 .

[20]  P. L. Combettes,et al.  Quasi-Fejérian Analysis of Some Optimization Algorithms , 2001 .

[21]  F. Tinti,et al.  Numerical Solution for Pseudomonotone Variational Inequality Problems by Extragradient Methods , 2005 .

[22]  Paul-Emile Maingé,et al.  Convergence of One-Step Projected Gradient Methods for Variational Inequalities , 2016, J. Optim. Theory Appl..

[23]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[24]  H. Attouch,et al.  An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .

[25]  Alfredo N. Iusem,et al.  An interior point method with Bregman functions for the variational inequality problem with paramonotone operators , 1998, Math. Program..

[26]  Alfredo N. Iusem,et al.  On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..

[27]  Paul-Emile Maingé Numerical approach to monotone variational inequalities by a one-step projected reflected gradient method with line-search procedure , 2016, Comput. Math. Appl..

[28]  Marc Teboulle,et al.  Projected subgradient methods with non-Euclidean distances for non-differentiable convex minimization and variational inequalities , 2009, Math. Program..

[29]  Regina Sandra Burachik,et al.  An Outer Approximation Method for the Variational Inequality Problem , 2005, SIAM J. Control. Optim..

[30]  W. J. Kaczor,et al.  Problems in mathematical analysis , 2000 .

[31]  Alfredo N. Iusem,et al.  Full convergence of an approximate projection method for nonsmooth variational inequalities , 2015, Math. Comput. Simul..

[32]  J. Y. Bello Cruz,et al.  An explicit algorithm for monotone variational inequalities , 2012 .