α-Fe2O3 nanotubes with superior lithium storage capability.

Polycrystalline α-Fe(2)O(3) nanotubes with thin walls have been synthesized by one-step template-engaged precipitation of Fe(OH)(x) followed by thermal annealing. In virtue of the unique structural features, these α-Fe(2)O(3) nanotubes exhibit superior lithium storage capabilities with exceptional high-rate capacity retention as a potential anode material for lithium-ion batteries.

[1]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[2]  Wenjun Zheng,et al.  α-Fe2O3: Hydrothermal Synthesis, Magnetic and Electrochemical Properties , 2010 .

[3]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[4]  Buxing Han,et al.  A Highly Efficient Chemical Sensor Material for H2S: α‐Fe2O3 Nanotubes Fabricated Using Carbon Nanotube Templates , 2005 .

[5]  Jun Song Chen,et al.  Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. , 2010, Journal of the American Chemical Society.

[6]  Zhiyu Wang,et al.  Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching. , 2010, Journal of the American Chemical Society.

[7]  Dong Wang,et al.  Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment , 2007 .

[8]  Youyong Liu,et al.  Hollow core-shell eta-Fe2O3 microspheres with excellent lithium-storage and gas-sensing properties. , 2010, Chemical communications.

[9]  T. Hyeon,et al.  Uniform hematite nanocapsules based on an anode material for lithium ion batteries , 2010 .

[10]  P. Bruce,et al.  Ordered mesoporous Fe2O3 with crystalline walls. , 2006, Journal of the American Chemical Society.

[11]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[12]  J. J. Fritz Solubility of cuprous chloride in various soluble aqueous chlorides , 1982 .

[13]  P. Mandal,et al.  Hollow spheres to nanocups: tuning the morphology and magnetic properties of single-crystalline alpha-Fe2O3 nanostructures. , 2008, Angewandte Chemie.

[14]  Yuqiu Wang,et al.  Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. , 2006, The journal of physical chemistry. B.

[15]  C. Zhang,et al.  Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells , 2009 .

[16]  Xiaozhen Wu,et al.  Hematite nanoflakes as anode electrode materials for rechargeable lithium-ion batteries , 2010 .

[17]  Chang Ming Li,et al.  Building hematite nanostructures by oriented attachment. , 2011, Angewandte Chemie.

[18]  S. Komaba,et al.  Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α‐Fe2O3 for Rechargeable Batteries , 2010 .

[19]  Shuhong Yu,et al.  Synthesis and Magnetic Properties of Uniform Hematite Nanocubes , 2007 .

[20]  Jian Jiang,et al.  Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage , 2010 .

[21]  Changwen Hu,et al.  α-Fe2O3 Nanostructures: Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage , 2008 .

[22]  Li Wan,et al.  Self‐Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment , 2006 .

[23]  D. Shindo,et al.  Characterization of Hematite Particles of Different Shapes , 1993 .

[24]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[25]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[26]  K. Tang,et al.  Facile Route for the Fabrication of Porous Hematite Nanoflowers: Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties , 2008 .

[27]  Feng Gao,et al.  Low-symmetry iron oxide nanocrystals bound by high-index facets. , 2010, Angewandte Chemie.

[28]  Zaiping Guo,et al.  Preparation of α-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries , 2008 .

[29]  Yuhan Sun,et al.  Single‐Crystalline Dodecahedral and Octodecahedralα‐Fe2O3 Particles Synthesized by a Fluoride Anion–Assisted Hydrothermal Method , 2010 .

[30]  Shudong Zhang,et al.  Hematite Hollow Spheres with a Mesoporous Shell: Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries , 2008 .

[31]  Jae-pyoung Ahn,et al.  Sol–Gel Mediated Synthesis of Fe2O3 Nanorods , 2003 .

[32]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[33]  Xiaochuan Duan,et al.  Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. , 2009, ACS nano.

[34]  Zhong Lin Wang,et al.  Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: large-scale synthesis, formation mechanism, and properties. , 2005, Angewandte Chemie.

[35]  Kenneth S Suslick,et al.  Sonochemical synthesis of nanosized hollow hematite. , 2007, Journal of the American Chemical Society.