Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes.

Photocatalysts and Photoelectrodes James L. White,† Maor F. Baruch,† James E. Pander III,† Yuan Hu,† Ivy C. Fortmeyer,† James Eujin Park,† Tao Zhang,† Kuo Liao,† Jing Gu,‡ Yong Yan,‡ Travis W. Shaw,† Esta Abelev,† and Andrew B. Bocarsly*,† †Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States ‡Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States

[1]  K. Ogura,et al.  Electrocatalytic reduction of carbon dioxide to methanol Part III. Use of an electrochemical photocell , 1986 .

[2]  N. S. Sariciftci,et al.  A Comparison of Pyridazine and Pyridine as Electrocatalysts for the Reduction of Carbon Dioxide to Methanol , 2014 .

[3]  K. Domen,et al.  Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides , 1986 .

[4]  Wenzheng Li,et al.  Electrocatalytic Reduction of CO2 to Small Organic Molecule Fuels on Metal Catalysts , 2010 .

[5]  Jun Jiang,et al.  Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions , 2014, Advanced materials.

[6]  Bhupendra Kumar,et al.  Supplement Information for Photochemical and Photoelectrochemical Reduction of CO 2 , 2012 .

[7]  D. Lowy,et al.  Electrochemical reduction of carbon dioxide on flat metallic cathodes , 1997 .

[8]  A. Tinnemans,et al.  Tetraaza‐macrocyclic cobalt(II) and nickel(II) complexes as electron‐transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide , 2010 .

[9]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[10]  A. D. Yoffe,et al.  Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .

[11]  John P. Baltrus,et al.  Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts , 2009 .

[12]  Alexander J. Cowan,et al.  A functionalised nickel cyclam catalyst for CO₂ reduction: electrocatalysis, semiconductor surface immobilisation and light-driven electron transfer. , 2015, Physical chemistry chemical physics : PCCP.

[13]  Yong Zhou,et al.  All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel. , 2015, Chemical communications.

[14]  Claudio Ampelli,et al.  Electrocatalytic conversion of CO2 on carbon nanotube-based electrodes for producing solar fuels , 2013 .

[15]  Huanting Wang,et al.  ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel , 2013 .

[16]  C. Kubiak,et al.  Combined steric and electronic effects of positional substitution on dimethyl-bipyridine rhenium(I)tricarbonyl electrocatalysts for the reduction of CO2 , 2014 .

[17]  H. Yamashita,et al.  Reductive Conversion of Carbon Dioxide Using Various Photocatalyst Materials , 2014 .

[18]  M. Gondal,et al.  Highly-active direct Z-scheme Si/TiO2 photocatalyst for boosted CO2 reduction into value-added methanol , 2014 .

[19]  Tonio Buonassisi,et al.  Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits , 2013, Proceedings of the National Academy of Sciences.

[20]  N. Ahmed,et al.  Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts , 2012 .

[21]  Jimin Fan,et al.  Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. , 2009 .

[22]  Tsunehiro Tanaka,et al.  Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2 , 2000 .

[23]  Liang Xu,et al.  Effective visible-light driven CO2 photoreduction via a promising bifunctional iridium coordination polymer , 2014 .

[24]  F. Solymosi,et al.  Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 Catalysts , 1994 .

[25]  Jinhua Ye,et al.  Mesoporous zinc germanium oxynitride for CO2 photoreduction under visible light. , 2012, Chemical communications.

[26]  F. Armstrong,et al.  Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode. , 2014, Journal of the American Chemical Society.

[27]  Robert C. Snoeberger,et al.  Covalent attachment of a rhenium bipyridyl CO2 reduction catalyst to Rutile TiO2. , 2011, Journal of the American Chemical Society.

[28]  M. Anpo,et al.  Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts , 1995 .

[29]  R. Hamers,et al.  Electrolyte Dependence of CO2 Electroreduction: Tetraalkylammonium Ions Are Not Electrocatalysts , 2015 .

[30]  Elizabeth Pierce,et al.  Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. , 2012, Chemical communications.

[31]  G. Mul,et al.  Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. , 2014, Physical chemistry chemical physics : PCCP.

[32]  Á. Irabien,et al.  Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode , 2012 .

[33]  E. Carter,et al.  Theoretical Insights into Electrochemical CO2 Reduction Mechanisms Catalyzed by Surface-Bound Nitrogen Heterocycles , 2013 .

[34]  H. Dobbek Structural aspects of mononuclear Mo/W-enzymes , 2011 .

[35]  Makoto Ogawa,et al.  Photocatalytic Reduction of CO2 with H2O on Ti-Containing Porous Silica Thin Film Photocatalysts , 2002 .

[36]  N. Dimitrijević,et al.  Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes , 2010 .

[37]  B. Aurian‐Blajeni,et al.  Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes , 1983 .

[38]  Y. Wada,et al.  Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction1 , 1998 .

[39]  H. Frei,et al.  Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy , 2000 .

[40]  M. Anpo Photocatalytic reduction of CO2 with H2O on highly dispersed Ti-oxide catalysts as a model of artificial photosynthesis , 2013 .

[41]  H. Kisch,et al.  Heterogeneous Photocatalysis, IX. Zinc Sulfide Catalyzed Photoreduction of Carbon Dioxide , 1991 .

[42]  T. Ohno,et al.  Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light , 2014 .

[43]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[44]  K. Ogura Catalytic Conversion of Carbon Monoxide and Carbon Dioxide into Methanol with Photocells , 1987 .

[45]  Z. Fang,et al.  Applications of TiO2 nanotube arrays in environmental and energy fields: A review , 2015 .

[46]  Masami Shibata,et al.  High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes , 1997 .

[47]  Junseok Lee,et al.  Electron-induced dissociation of CO2 on TiO2(110). , 2011, Journal of the American Chemical Society.

[48]  Angel Irabien,et al.  Continuous electrochemical reduction of carbon dioxide into formate using a tin cathode: Comparison with lead cathode , 2014 .

[49]  M. Bradley,et al.  Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconduccting electrodes , 1983 .

[50]  E. Carter,et al.  Cluster Models for Studying CO2 Reduction on Semiconductor Photoelectrodes , 2015, Topics in Catalysis.

[51]  Chen Li,et al.  Polyphenylene-based materials for organic photovoltaics. , 2010, Chemical reviews.

[52]  Jiaguo Yu,et al.  New Way for CO2 Reduction under Visible Light by a Combination of a Cu Electrode and Semiconductor Thin Film: Cu2O Conduction Type and Morphology Effect , 2014 .

[53]  T. Meyer,et al.  Proton-coupled electron transfer. , 2007, Chemical reviews.

[54]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[55]  T. Kajino,et al.  Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes , 2013 .

[56]  A. Sammells,et al.  Efficient High Rate Carbon Dioxide Reduction to Methane and Ethylene at in situ Electrodeposited Copper Electrode , 1987 .

[57]  Hongyi Zhang,et al.  Active and selective conversion of CO2 to CO on ultrathin Au nanowires. , 2014, Journal of the American Chemical Society.

[58]  Carbon Dioxide Utilization Electrochemical Conversion of CO 2 – Opportunities and Challenges , 2022 .

[59]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[60]  B. Aurian‐Blajeni,et al.  Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide , 1983 .

[61]  J. Savéant,et al.  Electrochemistry of acids on platinum. Application to the reduction of carbon dioxide in the presence of pyridinium ion in water. , 2013, Journal of the American Chemical Society.

[62]  I. Sharp,et al.  Direct observation of the reduction of carbon dioxide by rhenium bipyridine catalysts , 2013 .

[63]  I-Hsiang Tseng,et al.  Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts , 2002 .

[64]  Kohei Inoue,et al.  Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder , 1992 .

[65]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[66]  Yumei Zhai,et al.  The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. , 2011, ChemSusChem.

[67]  J. Yano,et al.  Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes , 2007 .

[68]  J. Sauvage,et al.  Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. , 1986, Journal of the American Chemical Society.

[69]  N. Ahmed,et al.  Photocatalytic conversion of carbon dioxide into methanol using zinc–copper–M(III) (M = aluminum, gallium) layered double hydroxides , 2011 .

[70]  Jiangtian Li,et al.  Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review , 2015 .

[71]  E. Carter,et al.  Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2. , 2012, Journal of the American Chemical Society.

[72]  C. V. Singh,et al.  Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3-x)(OH)y. , 2015, Physical chemistry chemical physics : PCCP.

[73]  Kaname Ito,et al.  Influence of Surface Treatment of the p-GaP Photocathode on the Photoelectrochemical Reduction of Carbon Dioxide. , 1993 .

[74]  Kamal Kishore,et al.  Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water , 2004 .

[75]  Keiko Uemura,et al.  Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. , 2011, Journal of the American Chemical Society.

[76]  R. Jurczakowski,et al.  CO₂ electroreduction at bare and Cu-decorated Pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au(111). , 2014, Langmuir : the ACS journal of surfaces and colloids.

[77]  Jai Hyun Koh,et al.  A monolithic and standalone solar-fuel device having comparable efficiency to photosynthesis in nature , 2015 .

[78]  Wei Xiao,et al.  Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. , 2014, Journal of the American Chemical Society.

[79]  Bin Sun,et al.  Recent advances in solar cells based on one-dimensional nanostructure arrays. , 2012, Nanoscale.

[80]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[81]  J. Kang,et al.  Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane , 2012 .

[82]  M. Grätzel,et al.  Photon assisted reduction of CO2 , 1994 .

[83]  J. Sauvage,et al.  Electrocatalytic Reduction of CO2 by Ni Cyclam2+ in Water: Study of the Factors Affecting the Efficiency and the Selectivity of the Process , 1987 .

[84]  M. Halmann 15 – Photochemical Fixation of Carbon Dioxide , 1983 .

[85]  Tong Jin,et al.  Photocatalytic CO2 reduction using a molecular cobalt complex deposited on TiO2 nanoparticles. , 2014, Chemical communications.

[86]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[87]  T. Reda,et al.  Reversible interconversion of carbon dioxide and formate by an electroactive enzyme , 2008, Proceedings of the National Academy of Sciences.

[88]  M. Gondal,et al.  Selective laser enhanced photocatalytic conversion of CO2 into methanol , 2004 .

[89]  Yong Zhou,et al.  High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. , 2010, Journal of the American Chemical Society.

[90]  Christina W. Li,et al.  CO 2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu 2 O Films , 2012 .

[91]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[92]  R. L. Hulstrom,et al.  Terrestrial solar spectral data sets , 1982 .

[93]  C. Ni,et al.  Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol , 2006 .

[94]  Claudio Ampelli,et al.  Synthesis of solar fuels by a novel photoelectrocatalytic approach , 2010 .

[95]  Yu‐Wen Chen,et al.  Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 cocatalysts , 2012 .

[96]  Tsunehiro Tanaka,et al.  PHOTOREDUCTION OF CARBON DIOXIDE WITH HYDROGEN OVER ZRO2 , 1997 .

[97]  A. Kudo,et al.  Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. , 2011, Journal of the American Chemical Society.

[98]  Jinhua Ye,et al.  Photoreduction of Carbon Dioxide Over NaNbO3 Nanostructured Photocatalysts , 2011 .

[99]  Jun Cheng,et al.  Optimizing CO2 reduction conditions to increase carbon atom conversion using a Pt-RGO||Pt-TNT photoelectrochemical cell , 2015 .

[100]  Y. Wada,et al.  Semiconductor photocatalysis. Part 20.—Role of surface in the photoreduction of carbon dioxide catalysed by colloidal ZnS nanocrystallites in organic solvent , 1996 .

[101]  Reshef Tenne,et al.  Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an a.c. impedance study with phase-sensitive detection , 1996 .

[102]  Pingquan Wang,et al.  One-pot synthesis of rutile TiO2 nanoparticle modified anatase TiO2 nanorods toward enhanced photocatalytic reduction of CO2 into hydrocarbon fuels , 2012 .

[103]  X. Bao,et al.  Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. , 2015, Journal of the American Chemical Society.

[104]  Y. Nakato,et al.  Modification of semiconductor surface with ultrafine metal particles for efficient photoelectrochemical reduction of carbon dioxide , 1997 .

[105]  K. Ogura,et al.  Catalytic conversion of CO and CO2 into methanol with a solar cell , 1986 .

[106]  K. Schulte,et al.  Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light , 2010 .

[107]  M. Bradley,et al.  p-Type silicon based photoelectrochemical cells for optical energy conversion: Electrochemistry of tetra-azomacrocyclic metal complexes at illuminated , 1982 .

[108]  Ibram Ganesh,et al.  Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review) , 2014 .

[109]  Lin Yang,et al.  Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. , 2013, Chemistry.

[110]  M. Grätzel Dye-sensitized solar cells , 2003 .

[111]  J. S. Lee,et al.  Aqueous-solution route to zinc telluride films for application to CO₂ reduction. , 2014, Angewandte Chemie.

[112]  C. Kubiak,et al.  Tunable, light-assisted co-generation of CO and H2 from CO2 and H2O by Re(bipy-tbu)(CO)3Cl and p-Si in non-aqueous medium. , 2012, Chemical communications.

[113]  Masaaki Kitano,et al.  Recent developments in titanium oxide-based photocatalysts , 2007 .

[114]  R. Asahi,et al.  Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. , 2014, Chemical reviews.

[115]  Kaname Ito,et al.  The photoelectrochemical reduction of carbon dioxide as a model of artificial photosynthesis , 1994 .

[116]  Jun Zhang,et al.  The photoelectric catalytic reduction of CO2 to methanol on CdSeTe NSs/TiO2 NTs , 2014 .

[117]  C. Musgrave,et al.  Role of Pyridine as a Biomimetic Organo-Hydride for Homogeneous Reduction of CO2 to Methanol , 2014, 1408.2866.

[118]  T. Kajino,et al.  Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction , 2012 .

[119]  Hui Peng,et al.  Worm-like InP/TiO2 NTs heterojunction with unmatched energy band photo-enhanced electrocatalytic reduction of CO2 to methanol , 2014 .

[120]  Brian R. Eggins,et al.  Formation of two-carbon acids from carbon dioxide by photoreduction on cadmium sulphide , 1988 .

[121]  Victor S Batista,et al.  Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111). , 2013, The journal of physical chemistry letters.

[122]  H. Arakawa,et al.  Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst , 1993 .

[123]  Coleman X. Kronawitter,et al.  Observation of Surface-Bound Negatively Charged Hydride and Hydroxide on GaP(110) in H2O Environments , 2015 .

[124]  C. Kubiak,et al.  Re(bipy-tBu)(CO)3Cl-improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. , 2010, Inorganic chemistry.

[125]  J. Wu,et al.  Sol-gel prepared InTaO_4 and its photocatalytic characteristics , 2008 .

[126]  Erwin Reisner,et al.  Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. , 2010, Journal of the American Chemical Society.

[127]  J. Petit,et al.  Molecular catalysts in photoelectrochemical cells , 1989 .

[128]  M. Anpo,et al.  Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Prepared within the FSM-16 Mesoporous Zeolite , 1999 .

[129]  Shinichi Ichikawa,et al.  Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis , 1996 .

[130]  Yueping Fang,et al.  Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation , 2012 .

[131]  M. Maroto-Valer,et al.  Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst , 2014 .

[132]  Xin Li,et al.  Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation , 2011 .

[133]  Jianmeng Chen,et al.  Photocatalytic Reduction of CO2 in Aqueous Solution on Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets , 2014 .

[134]  J. Wu,et al.  Chemical states of metal-loaded titania in the photoreduction of CO2 , 2004 .

[135]  Falong Jia,et al.  Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst , 2014 .

[136]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[137]  M. Steinberg,et al.  The Electrochemical Reduction of Carbon Dioxide, Formic Acid, and Formaldehyde , 1977 .

[138]  Emily Barton Cole,et al.  Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. , 2010, Journal of the American Chemical Society.

[139]  E. Akkaya,et al.  Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation , 2007 .

[140]  Z. Li,et al.  Fe-Based MOFs for Photocatalytic CO2 Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways , 2014 .

[141]  Tsunehiro Tanaka,et al.  Photocatalytic conversion of CO2 in water over layered double hydroxides. , 2012, Angewandte Chemie.

[142]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[143]  B. Dennis,et al.  Electrocatalytic Reduction of Carbon Dioxide Using Pt/C-TiO2 Nanocomposite Cathode , 2012 .

[144]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[145]  D. Arent,et al.  Electrochemical Investigation of the Gallium Nitride‐Aqueous Electrolyte Interface , 1995 .

[146]  Kimfung Li,et al.  Photocatalytic reduction of CO2 and protons using water as an electron donor over potassium tantalate nanoflakes. , 2014, Nanoscale.

[147]  J. Kelly,et al.  The Influence of Surface Recombination and Trapping on the Cathodic Photocurrent at p‐Type III‐V Electrodes , 1982 .

[148]  Jing Gu,et al.  p-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. , 2014, Journal of the American Chemical Society.

[149]  F. Saladin,et al.  Photosynthesis of CH4 at a TiO2 surface from gaseous H2O and CO2 , 1995 .

[150]  T. Kajino,et al.  Photoinduced Electron Transfer from Nitrogen-Doped Tantalum Oxide to Adsorbed Ruthenium Complex , 2011 .

[151]  Wenzheng Li Electrocatalytic reduction of CO 2 to small organic molecule fuels on metal catalysts , 2010 .

[152]  T. Peng,et al.  Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation , 2012 .

[153]  M. Nishida A theoretical treatment of charge transfer via surface states at a semiconductor‐electrolyte interface: Analysis of the water photoelectrolysis process , 1980 .

[154]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[155]  Norman Hackerman,et al.  The Electroreduction of Carbon Dioxide and Formic Acid on Tin and Indium Electrodes , 1983 .

[156]  Xin Li,et al.  Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation , 2013 .

[157]  M. Halmann,et al.  Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V(II)-V(III) chloride redox system , 1983 .

[158]  K. W. Frese,et al.  Reduction of CO 2 on n ‐ GaAs Electrodes and Selective Methanol Synthesis , 1984 .

[159]  V. Batista,et al.  Orientation of a Series of CO2 Reduction Catalysts on Single Crystal TiO2 Probed by Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy (PS-VSFG) , 2012 .

[160]  Yong Yan,et al.  Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. , 2013, Journal of the American Chemical Society.

[161]  B. Aurian‐Blajeni,et al.  Photo-aided reduction of carbon dioxide to carbon monoxide , 1983 .

[162]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[163]  Chun He,et al.  Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light , 2011 .

[164]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[165]  Kaname Ito,et al.  On the reduction products of carbon dioxide at a p-type gallium phosphide photocathode in aqueous electrolytes. , 1984 .

[166]  J. Petit,et al.  Photoassisted electro-reduction of CO2 on p-GaAs in the presence of Ni cyclam2+ , 1986 .

[167]  Elizabeth L. Zeitler,et al.  Electrochemical Reduction of Aqueous Imidazolium on Pt(111) by Proton Coupled Electron Transfer , 2015, Topics in Catalysis.

[168]  Photocatalytic CO2 reduction by TiO2 and related titanium containing solids , 2012 .

[169]  C. Kubiak,et al.  Homogeneous CO2 reduction by Ni(cyclam) at a glassy carbon electrode. , 2012, Inorganic chemistry.

[170]  Thomas F. Jaramillo,et al.  Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. , 2014, Journal of the American Chemical Society.

[171]  Congjun Wang,et al.  Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts , 2011 .

[172]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[173]  Shaohua Liu,et al.  Photocatalytic reduction of carbon dioxide using sol-gel derived titania-supported CoPc catalysts , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[174]  N. Dimitrijević,et al.  Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition , 2009 .

[175]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[176]  Jean-Michel Savéant,et al.  Catalysis of the Electrochemical Reduction of Carbon Dioxide , 2013 .

[177]  A. Corma,et al.  Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale. , 2008, Physical chemistry chemical physics : PCCP.

[178]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[179]  Balasubramanian Viswanathan,et al.  Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst , 2005 .

[180]  Ying Dai,et al.  Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst , 2009 .

[181]  A. Kudo,et al.  The KCaSrTa5O15 photocatalyst with tungsten bronze structure for water splitting and CO2 reduction. , 2014, Physical chemistry chemical physics : PCCP.

[182]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[183]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[184]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[185]  T. S. Dzhabiev,et al.  Photocatalytic reduction of carbon dioxide in aqueous semiconductor suspensions , 1992 .

[186]  Gonghu Li,et al.  Photocatalytic CO2 Reduction and Surface Immobilization of a Tricarbonyl Re(I) Compound Modified with Amide Groups , 2013 .

[187]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[188]  Gonghu Li,et al.  Enhanced Charge Separation in Nanostructured TiO2 Materials for Photocatalytic and Photovoltaic Applications , 2012 .

[189]  M. Fan,et al.  High efficiency photocatalytic conversion of CO2 with H2O over Pt/TiO2 nanoparticles , 2014 .

[190]  S. Komarneni,et al.  Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide , 2011 .

[191]  Y. Teraoka,et al.  Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts , 1994 .

[192]  Douglas R. Kauffman,et al.  Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. , 2012, Journal of the American Chemical Society.

[193]  T. Kajino,et al.  Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. , 2010, Angewandte Chemie.

[194]  Matthew W. Kanan,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[195]  Z. Salehi,et al.  Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation , 2014 .

[196]  Sarah Hurst Petrosko,et al.  CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles. , 2013, The journal of physical chemistry letters.

[197]  Jiongliang Yuan,et al.  Role of pyridine in photoelectrochemical reduction of CO2 to methanol at a CuInS2 thin film electrode , 2014 .

[198]  H. Schwarz,et al.  Reduction potentials of CO2- and the alcohol radicals , 1989 .

[199]  Y. Izumi,et al.  Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond , 2013 .

[200]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[201]  Z. Li,et al.  Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au). , 2014, Chemistry.

[202]  Takashi Tatsumi,et al.  Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves , 1998 .

[203]  M. Zhang,et al.  Self-organized vanadium and nitrogen co-doped titania nanotube arrays with enhanced photocatalytic reduction of CO2 into CH4 , 2014, Nanoscale Research Letters.

[204]  Ying Dai,et al.  Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. , 2013, ACS applied materials & interfaces.

[205]  C. Lokhande,et al.  Electrochemical photovoltaic cells for solar energy conversion , 1984 .

[206]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[207]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[208]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[209]  Qinghong Zhang,et al.  MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water , 2014 .

[210]  T. Yanagihara,et al.  Electrochemical Reduction of CO 2 at Sb and Bi Electrodes in KHCO 3 Solution , 1995 .

[211]  Y. Ling,et al.  CuxAgyInzZnkSm solid solutions customized with RuO2 or Rh1.32Cr0.66O3 co-catalyst display visible light-driven catalytic activity for CO2 reduction to CH3OH , 2011 .

[212]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[213]  Elizabeth L. Zeitler,et al.  Mechanism of acid reduction at low and high overpotential metal electrodes in the presence and absence of CO2: Implications for CO2 reduction by N-heterocycles , 2014 .

[214]  Dong Liu,et al.  Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior , 2012 .

[215]  N. Dimitrijević,et al.  Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. , 2011, Journal of the American Chemical Society.

[216]  J. Wu,et al.  Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight , 2008 .

[217]  Huiling Li,et al.  Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation , 2011 .

[218]  H. Yoneyama,et al.  Photocatalytic activities for carbon dioxide reduction of TiO2 microcrystals prepared in SiO2 matrices using a sol-gel method , 1994 .

[219]  Monte L. Helm,et al.  Determining the Overpotential for a Molecular Electrocatalyst , 2014 .

[220]  A. Bard,et al.  The Concept of Fermi Level Pinning at Semiconductor/Liquid Junctions. Consequences for Energy Conversion Efficiency and Selection of Useful Solution Redox Couples in Solar Devices , 1980 .

[221]  Jian-Guo Yu,et al.  Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst , 2009 .

[222]  Emily A. Carter,et al.  Electrochemical reactivities of pyridinium in solution: consequences for CO2 reduction mechanisms , 2013 .

[223]  Su-Moon Park,et al.  Thermodynamic stabilities of semiconductor electrodes , 1979 .

[224]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.

[225]  Susumu Kuwabata,et al.  Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions , 1988 .

[226]  Yu‐Wen Chen,et al.  Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation , 2007 .

[227]  K. Ohta,et al.  Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes , 2006 .

[228]  Isao Taniguchi,et al.  Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon , 1983 .

[229]  Mark C Hersam,et al.  Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. , 2011, Nano letters.

[230]  Jiujun Zhang,et al.  A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. , 2014, Chemical Society reviews.

[231]  Yuichi Ichihashi,et al.  Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt , 1997 .

[232]  K. W. Frese,et al.  Electrochemical Reduction of CO 2 at Intentionally Oxidized Copper Electrodes , 1991 .

[233]  G. Dey CHEMICAL REDUCTION OF CO2 TO DIFFERENT PRODUCTS DURING PHOTO CATALYTIC REACTION ON TIO2 UNDER DIVERSE CONDITIONS: AN OVERVIEW , 2007 .

[234]  B. Michalkiewicz,et al.  Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst , 2014 .

[235]  A. Bocarsly,et al.  Role of surface reactions in the stabilization of n-CdS-based photoelectrochemical cells , 1984, Nature.

[236]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[237]  B. Aurian‐Blajeni,et al.  Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials , 1980 .

[238]  B. Aurian‐Blajeni,et al.  Photoreduction of Carbon Dioxide to Formic Acid, Formaldehyde, Methanol, Acetaldehyde and Ethanol Using Aqueous Suspensions of Strontium Titanate with Transition Metal Additives , 1982 .

[239]  B. Burgess,et al.  Mechanism of Molybdenum Nitrogenase , 1997 .

[240]  E. Akkaya,et al.  Dye sensitized CO2 reduction over pure and platinized TiO2 , 2007 .

[241]  Andrew B. Bocarsly,et al.  Photons to formate: Efficient electrochemical solar energy conversion via reduction of carbon dioxide , 2014 .

[242]  Lukas Schmidt-Mende,et al.  Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors , 2013 .

[243]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[244]  Jun Wang,et al.  Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce–TiO2/SBA-15 composites , 2012 .

[245]  K. Shankar,et al.  Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. , 2012, Angewandte Chemie.

[246]  Hideo Tamura,et al.  Photoelectrochemical Reduction of Carbon Dioxide at p-Type Gallium Phosphide Electrodes in the Presence of Crown Ether , 1982 .

[247]  W. Li,et al.  Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts , 2012 .

[248]  V. S. Bagotzky,et al.  Electroreduction of carbon dioxide: Part III. Adsorption and reduction of CO2 on platinum , 1985 .

[249]  A. Corma,et al.  Unseeded synthesis of Al-free Ti-β zeolite in fluoride medium: a hydrophobic selective oxidation catalyst , 1996 .

[250]  Jingjie Wu,et al.  Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell , 2014 .

[251]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[252]  Lianjun Liu,et al.  Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry , 2012 .

[253]  B. Aurian‐Blajeni,et al.  The study of adsorbed species during the photoassisted reduction of carbon dioxide at a p-CdTe electrode , 1983 .

[254]  Avelino Corma,et al.  Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges , 2013 .

[255]  Isao Taniguchi,et al.  The reduction of carbon dioxide at illuminated p-type semiconductor electrodes in nonaqueous media , 1984 .

[256]  G. Guan,et al.  Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight , 2003 .

[257]  CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve , 2004 .

[258]  R. Cava,et al.  Mg-Doped CuFeO2 Photocathodes for Photoelectrochemical Reduction of Carbon Dioxide , 2013 .

[259]  Jianguo Liu,et al.  Ultrathin, single-crystal WO(3) nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO(2) into hydrocarbon fuels under visible light. , 2012, ACS applied materials & interfaces.

[260]  Y. Yang,et al.  Comparison of CO2 Photoreduction Systems: A Review , 2014 .

[261]  H. Schobert,et al.  Quantum Mechanical Modeling of CO2 Interactions with Irradiated Stoichiometric and Oxygen-Deficient Anatase TiO2 Surfaces: Implications for the Photocatalytic Reduction of CO2 , 2009 .

[262]  Hiroaki Uchida,et al.  Electrocatalytic reduction of CO2 to methanol: Part VIII. Photoassisted electrolysis and electrochemical photocell with n-TiO2 anode , 1987 .

[263]  Pamela A Silver,et al.  Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system , 2015, Proceedings of the National Academy of Sciences.

[264]  Tsunehiro Tanaka,et al.  Photoreduction of carbon dioxide by hydrogen over magnesium oxide , 2001 .

[265]  Wooyul Kim,et al.  Light induced carbon dioxide reduction by water at binuclear ZrOCo(II) unit coupled to Ir oxide nanocluster catalyst. , 2014, Journal of the American Chemical Society.

[266]  N. Wu,et al.  Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing , 2012, Nano Research.

[267]  Muhammad Tahir,et al.  Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4 , 2015 .

[268]  K. Tennakone,et al.  Selective photoreduction of carbon dioxide to methanol with hydrous cuprous oxide , 1989 .

[269]  Andrew B. Bocarsly,et al.  Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy , 2015 .

[270]  E. Carter,et al.  Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals. , 2012, Journal of chemical theory and computation.

[271]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[272]  B. Aurian‐Blajeni,et al.  The mediation of the photoelectrochemical reduction of carbon dioxide by ammonium ions , 1984 .

[273]  J. Bolton,et al.  Requirements for ideal performance of photochemical and photovoltaic solar energy converters , 1990 .

[274]  Bruce A. Parkinson,et al.  Photoelectrochemical pumping of enzymatic CO2 reduction , 1984, Nature.

[275]  N. Masciocchi,et al.  Extended polymorphism in copper(II) imidazolate polymers: a spectroscopic and XRPD structural study. , 2001, Inorganic chemistry.

[276]  H. Yoshida,et al.  In-Situ FT-IR Study on the Mechanism of CO2 Reduction with Water over Metal (Ag or Au) Loaded Ga2O3 Photocatalysts , 2014 .

[277]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[278]  S. Cronin,et al.  CO2 Reduction to Methanol on TiO2-Passivated GaP Photocatalysts , 2014 .

[279]  Somnath C. Roy,et al.  Solar Spectrum Photocatalytic Conversion of CO2 and Water Vapor Into Hydrocarbons Using TiO2 Nanoparticle Membranes , 2014 .

[280]  Wei Li,et al.  Photocatalytic Reduction of Carbon Dioxide to Methane over SiO2-Pillared HNb3O8 , 2012 .

[281]  Z. Zou,et al.  ZnO plates synthesized from the ammonium zinc nitrate hydroxide precursor , 2012 .

[282]  Héctor D. Abruña,et al.  Electrocatalysis of CO2 reduction at surface modified metallic and semiconducting electrodes , 1986 .

[283]  Paitoon Tontiwachwuthikul,et al.  Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams , 2006 .

[284]  G. Guan,et al.  Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst , 2003 .

[285]  Jian Pan,et al.  On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. , 2011, Angewandte Chemie.

[286]  N. Sasirekha,et al.  Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide , 2006 .

[287]  Kaname Ito,et al.  Influence of light intensity on photoelectroreduction of CO2 at a p-GaP photocathode. , 1990 .

[288]  Jean-Michel Savéant,et al.  Standard potential and kinetic parameters of the electrochemical reduction of carbon dioxide in dimethylformamide , 1977 .

[289]  Luca Boarino,et al.  Monolithic Cells for Solar Fuels. , 2015 .

[290]  E. Carter,et al.  Non-innocent dissociation of H2O on GaP(110): implications for electrochemical reduction of CO2. , 2012, Journal of the American Chemical Society.

[291]  J. Mague,et al.  Redox-controlled interconversion between trigonal prismatic and octahedral geometries in a monodithiolene tetracarbonyl complex of tungsten. , 2012, Inorganic chemistry.

[292]  F. Paolucci,et al.  Efficiency enhancement of the electrocatalytic reduction of CO2: fac-[Re(v-bpy)(CO)3Cl] electropolymerized onto mesoporous TiO2 electrodes , 2006 .

[293]  Wei Li,et al.  Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2 , 2012 .

[294]  E. Borowiak‐Palen,et al.  Studies on nitrogen modified TiO2 photocatalyst prepared in different conditions , 2010 .

[295]  Z. Zou,et al.  Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O(4)-modified mesoporous ZnGaNO under visible light irradiation. , 2012, Chemical communications.

[296]  C. Musgrave,et al.  Mechanism of homogeneous reduction of CO2 by pyridine: proton relay in aqueous solvent and aromatic stabilization. , 2013, Journal of the American Chemical Society.

[297]  Nathan S. Lewis,et al.  Mechanistic studies of light-induced charge separation at semiconductor/liquid interfaces , 1990 .

[298]  Kyle A. Grice,et al.  The electronic states of rhenium bipyridyl electrocatalysts for CO2 reduction as revealed by X-ray absorption spectroscopy and computational quantum chemistry. , 2013, Angewandte Chemie.

[299]  Y. Nakato,et al.  An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles , 1998 .

[300]  S. Mezyk,et al.  Reduction potential of the carboxyl radical anion in aqueous solutions , 1989 .

[301]  Y. Matsumoto,et al.  Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder , 1994 .

[302]  Kyle A. Grice,et al.  Carbon monoxide release catalysed by electron transfer: electrochemical and spectroscopic investigations of [Re(bpy-R)(CO)4](OTf) complexes relevant to CO2 reduction. , 2013, Dalton transactions.

[303]  Elizabeth Pierce,et al.  CO2 photoreduction at enzyme-modified metal oxide nanoparticles , 2011 .

[304]  P. K. Roy,et al.  Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. , 2014, Nano letters.

[305]  Joshua M. Spurgeon,et al.  A Comparison Between the Behavior of Nanorod Array and Planar Cd(Se, Te) Photoelectrodes , 2008 .

[306]  H. Gerischer,et al.  The role of semiconductor structure and surface properties in photoelectrochemical processes , 1983 .

[307]  M. Romão Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. , 2009, Dalton transactions.

[308]  Norikazu Aikawa,et al.  Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous vycor glass , 1985 .

[309]  A. Aldaz,et al.  Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation , 2001 .

[310]  K. Hara,et al.  Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution , 1995 .

[311]  C. Rhodes Zeolites: physical aspects and environmental applications , 2007 .

[312]  Y. Zenitani,et al.  Enhanced CO2 reduction capability in an AlGaN/GaN photoelectrode , 2012 .

[313]  Matthew W. Kanan,et al.  Controlling H+ vs CO2 Reduction Selectivity on Pb Electrodes , 2015 .

[314]  K. Ohta,et al.  Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide , 1994 .

[315]  Yichuan Ling,et al.  Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.

[316]  M. Anpo,et al.  Reduction of CO2 with H2O on TiO2(100) and TiO2(110) Single Crystals under UV-irradiation , 1994 .

[317]  Thomas W. Hamann,et al.  Control of the stability, electron-transfer kinetics, and pH-dependent energetics of Si/H2O interfaces through methyl termination of Si(111) surfaces. , 2006, The journal of physical chemistry. B.

[318]  A D Yoffe,et al.  Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems , 2001 .

[319]  M. Anpo,et al.  In situ XAFS Studies on the Effects of the Hydrophobic–Hydrophilic Properties of Ti-Beta Zeolites in the Photocatalytic Reduction of CO2 with H2O , 2002 .

[320]  Akira Fujishima,et al.  PHOTOELECTROCHEMICAL REDUCTION OF CO2 IN A HIGH-PRESSURE CO2 + METHANOL MEDIUM AT P-TYPE SEMICONDUCTOR ELECTRODES , 1998 .

[321]  John T. S. Irvine,et al.  Factors affecting the photoelectrochemical fixation of carbon dioxide with semiconductor colloids , 1998 .

[322]  D. Tryk,et al.  Visible light-induced reduction of carbon dioxide sensitized by a porphyrin–rhenium dyad metal complex on p-type semiconducting NiO as the reduction terminal end of an artificial photosynthetic system , 2014 .

[323]  C. Pickett,et al.  Solar fuels: photoelectrosynthesis of CO from CO2 at p-type Si using Fe porphyrin electrocatalysts. , 2013, Chemistry.

[324]  Yong Zhou,et al.  Zinc Gallogermanate Solid Solution: A Novel Photocatalyst for Efficiently Converting CO2 into Solar Fuels , 2013 .

[325]  T. He,et al.  Visible‐Light Photocatalytic Conversion of Carbon Dioxide into Methane Using Cu2O/TiO2 Hollow Nanospheres , 2015 .

[326]  Takeshi Kobayashi,et al.  Novel CO2 Electrochemical Reduction to Methanol for H2 Storage , 2004 .

[327]  Ying Li,et al.  Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels , 2011 .

[328]  A. Sammells,et al.  Photoelectrochemical Carbon Dioxide Reduction to Hydrocarbons at Ambient Temperature and Pressure , 1988 .

[329]  Shiying Zhang,et al.  Barium zirconate: a new photocatalyst for converting CO2 into hydrocarbons under UV irradiation , 2015 .

[330]  C. Kubiak,et al.  Photoreduction of CO2 on p-type Silicon Using Re(bipy-But)(CO)3Cl: Photovoltages Exceeding 600 mV for the Selective Reduction of CO2 to CO , 2010 .

[331]  Ying Li,et al.  Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review , 2014 .

[332]  S. Yamagata,et al.  CO 2 reduction to CH 4 with H 2 on photoirradiated TS-1 , 1995 .

[333]  A. Mohamed,et al.  Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide , 2013, Nanoscale Research Letters.

[334]  M. Dong,et al.  Curvature effect of SiC nanotubes and sheets for CO2 capture and reduction , 2014 .

[335]  Hao Ming Chen,et al.  Ni@NiO Core–Shell Structure-Modified Nitrogen-Doped InTaO4 for Solar-Driven Highly Efficient CO2 Reduction to Methanol , 2011 .

[336]  Ichiro Yoshida,et al.  Electrocatalytic reduction of carbon dioxide to methanol—VI. Use of a solar cell and comparison with that of carbon monoxide , 1987 .

[337]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[338]  Elizabeth L. Zeitler,et al.  Comparative Study of Imidazole and Pyridine Catalyzed Reduction of Carbon Dioxide at Illuminated Iron Pyrite Electrodes , 2012 .

[339]  M. Anpo,et al.  Photocatalytic Reduction of CO2 with H2O on Ti−β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties , 2001 .

[340]  Akihiko Kudo,et al.  Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte , 1995 .

[341]  Junwang Tang,et al.  Controllable proton and CO2 photoreduction over Cu2O with various morphologies , 2013 .

[342]  Kimberly M. Papadantonakis,et al.  A taxonomy for solar fuels generators , 2015 .

[343]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[344]  C. Kubiak,et al.  Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide. , 2014, Journal of the American Chemical Society.

[345]  Ning Zhang,et al.  Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light , 2011 .

[346]  T. Tatsumi,et al.  Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts , 1998 .

[347]  H. Gerischer,et al.  Photodecomposition of Semiconductors – A Thermodynamic Approach. A Citation-Classic Commentary on the Stability of semiconductor electrodes against photodecomposition , 1977 .

[348]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[349]  Xinchen Wang,et al.  Innenrücktitelbild: Cobalt Imidazolate Metal–Organic Frameworks Photosplit CO2 under Mild Reaction Conditions (Angew. Chem. 4/2014) , 2014 .

[350]  Zhihuan Zhao,et al.  Photo-catalytic CO2 reduction using sol–gel derived titania-supported zinc-phthalocyanine , 2007 .

[351]  C. Yuan,et al.  Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor , 2007 .

[352]  N. Dasgupta,et al.  Semiconductor Nanowires for Artificial Photosynthesis , 2014 .

[353]  P. Kenis,et al.  Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis , 2013 .

[354]  Hiroshi Inoue,et al.  Photochemical Reduction of Carbon Dioxide to Methanol Using ZnS Microcrystallite as a Photocatalyst in the Presence of Methanol Dehydrogenase , 1994 .

[355]  H. García,et al.  Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. , 2014, Journal of the American Chemical Society.

[356]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[357]  O. Ishitani,et al.  Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂. , 2011, ACS applied materials & interfaces.

[358]  H. Gerischer Photodecomposition of semiconductors thermodynamics, kinetics and application to solar cells , 1980 .

[359]  Lucie Obalová,et al.  Effect of TiO2 particle size on the photocatalytic reduction of CO2 , 2009 .

[360]  A. Paul Alivisatos,et al.  Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. , 2014, Journal of the American Chemical Society.

[361]  B. Viswanathan,et al.  Photocatalytic Reduction of Carbon Dioxide by Water: A Step towards Sustainable Fuels and Chemicals , 2012 .

[362]  J. Keith,et al.  Thermodynamic Descriptors for Molecules That Catalyze Efficient CO2 Electroreductions , 2015 .

[363]  M. Anpo,et al.  Photocatalytic reduction of CO2 on anchored titanium oxide catalysts , 1992 .

[364]  B. Wood,et al.  CO2 Adsorption on Anatase TiO2 (101) Surfaces in the Presence of Subnanometer Ag/Pt Clusters: Implications for CO2 Photoreduction , 2014 .

[365]  K. Ohta,et al.  Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol , 2009 .

[366]  J. Sauvage,et al.  Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water , 1984 .

[367]  Junying Zhang,et al.  Efficient photocatalytic reduction of CO2 into liquid products over cerium doped titania nanoparticles synthesized by a sol–gel auto-ignited method , 2015 .

[368]  Hung-Ming Lin,et al.  Photo reduction of CO2 to methanol using optical-fiber photoreactor , 2005 .

[369]  W. K. Schubert,et al.  Effects of light and modulation frequency on spin-dependent trapping at silicon grain boundaries , 1984 .

[370]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[371]  S. Woo,et al.  Synergism between CdTe semiconductor and pyridine – photoenhanced electrocatalysis for CO2 reduction to formic acid , 2014 .

[372]  A. Fujishima,et al.  Photoelectrochemical Reduction of CO 2 at High Current Densities at p‐InP Electrodes , 1998 .

[373]  So Iwata,et al.  Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N , 2002, Science.

[374]  J. Bockris,et al.  On the photoelectrocatalytic reduction of carbon dioxide , 1989 .

[375]  Jonathan W. Lekse,et al.  Synthesis, Characterization, Electronic Structure, and Photocatalytic Behavior of CuGaO2 and CuGa1–xFexO2 (x = 0.05, 0.10, 0.15, 0.20) Delafossites , 2012 .

[376]  Karen Chan,et al.  Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction , 2014 .

[377]  Matthew W. Kanan,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[378]  R. Asahi,et al.  Theoretical Insights into the Impact of Ru Catalyst Anchors on the Efficiency of Photocatalytic CO2 Reduction on Ta2O5. , 2015, The journal of physical chemistry. B.

[379]  Pratim Biswas,et al.  Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. , 2012, Journal of the American Chemical Society.

[380]  J. Mague,et al.  Ancillary ligand effects upon dithiolene redox noninnocence in tungsten bis(dithiolene) complexes. , 2013, Inorganic chemistry.

[381]  C. Musgrave,et al.  Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine. , 2014, Journal of the American Chemical Society.

[382]  Kazuhiko Maeda,et al.  Artificial Z-Scheme Constructed with a Supramolecular Metal Complex and Semiconductor for the Photocatalytic Reduction of CO2 , 2013, Journal of the American Chemical Society.

[383]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[384]  M. Gondal,et al.  CO2 Conversion into Methanol Using Granular Silicon Carbide (α6H-SiC): A Comparative Evaluation of 355 nm Laser and Xenon Mercury Broad Band Radiation Sources , 2012, Catalysis Letters.

[385]  K. Ohta,et al.  Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol , 2006 .

[386]  Hyunwoong Park,et al.  Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. , 2015, The journal of physical chemistry. A.

[387]  Yuichi Ichihashi,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts , 1995 .

[388]  A. Bocarsly,et al.  Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[389]  C. Grovenor Grain boundaries in semiconductors , 1985 .

[390]  Ying Yu,et al.  Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O , 2007 .