Effects of trailing jet instability on vortex ring formation

Numerical simulations of an impulsively started jet were performed in order to investigate the effects of trailing jet instability on axisymmetric vortex ring formation. The predictions were compared to experimental results reported in the literature and to recently published numerical results. The total and vortex ring circulations were found to be in good agreement with both the experimental and the numerical results. The presence of a universal formation time scale was confirmed. The results also highlighted an important interaction between an instability which develops in the trailing jet for large discharge times and the dynamics of the head vortex ring. This interaction accelerates the process by which the vortex ring detaches from the trailing jet and has a significant effect on the vortex ring circulation.