Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology

[1]  L. Meng,et al.  Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design , 2021, Nature Communications.

[2]  Chunhui Duan,et al.  All-polymer solar cells , 2021, Journal of Semiconductors.

[3]  F. Huang,et al.  Optimized active layer morphology via side-chain atomic substituents to achieve efficient and stable all-polymer solar cells , 2021, Journal of Materials Chemistry C.

[4]  Bumjoon J. Kim,et al.  Regioregular Narrow‐Bandgap n‐Type Polymers with High Electron Mobility Enabling Highly Efficient All‐Polymer Solar Cells , 2021, Advanced materials.

[5]  Yong Cui,et al.  Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency , 2021 .

[6]  Zhenyu Chen,et al.  Small-molecular donor guest achieves rigid 18.5% and flexible 15.9% efficiency organic photovoltaic via fine-tuning microstructure morphology , 2021 .

[7]  Yuan Zhang,et al.  Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells , 2021, Nature Energy.

[8]  Jianqi Zhang,et al.  A New Conjugated Polymer that Enables the Integration of Photovoltaic and Light‐Emitting Functions in One Device , 2021, Advanced materials.

[9]  C. Brabec,et al.  Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors , 2021 .

[10]  F. Huang,et al.  All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor , 2021 .

[11]  F. Gao,et al.  16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend , 2021 .

[12]  Yuze Lin,et al.  An Electron Acceptor Analogue for Lowering Trap Density in Organic Solar Cells , 2021, Advanced materials.

[13]  Hongzheng Chen,et al.  Layer‐by‐Layer Processed Ternary Organic Photovoltaics with Efficiency over 18% , 2021, Advanced materials.

[14]  Weiqi Wang,et al.  High‐Performance All‐Polymer Solar Cells with a Pseudo‐Bilayer Configuration Enabled by a Stepwise Optimization Strategy , 2021, Advanced Functional Materials.

[15]  A. Jen,et al.  Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length , 2021, Nature Communications.

[16]  F. Huang,et al.  15.4% Efficiency all-polymer solar cells , 2021, Science China Chemistry.

[17]  M. Zhang,et al.  Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation , 2020, Energy & Environmental Science.

[18]  F. Peng,et al.  A Universal Fluorinated Polymer Acceptor Enables All-Polymer Solar Cells with >15% Efficiency , 2020 .

[19]  Hui Lin,et al.  Layer‐by‐Layer Solution Processing Method for Organic Solar Cells , 2020 .

[20]  C. Sheng,et al.  Improved Hole Transfer and Charge Generation in All-Polymer Photovoltaic Blends with a P–i–N Structure , 2020 .

[21]  X. Gu,et al.  Vertical Composition Distribution and Crystallinity Regulations Enable High-Performance Polymer Solar Cells with >17% Efficiency , 2020 .

[22]  B. Liu,et al.  A Narrow‐Bandgap n‐Type Polymer with an Acceptor–Acceptor Backbone Enabling Efficient All‐Polymer Solar Cells , 2020, Advanced materials.

[23]  A. Jen,et al.  A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells , 2020 .

[24]  C. Brabec,et al.  The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets , 2020, Nature Energy.

[25]  Yongfang Li,et al.  Polymerized Small Molecule Acceptors for High Performance All-polymer Solar Cells. , 2020, Angewandte Chemie.

[26]  Changduk Yang,et al.  A Non‐Conjugated Polymer Acceptor for Efficient and Thermally Stable All‐Polymer Solar Cells , 2020, Angewandte Chemie.

[27]  Yanming Sun,et al.  Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells , 2020, Nature Communications.

[28]  Wenkai Zhong,et al.  14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor , 2020 .

[29]  Wenyan Yang,et al.  Controlling Molecular Mass of Low-Band-Gap Polymer Acceptors for High-Performance All-Polymer Solar Cells , 2020 .

[30]  Ailing Tang,et al.  Low-Bandgap n-Type Polymer Based on a Fused-DAD-Type Heptacyclic Ring for All-Polymer Solar Cell Application with a Power Conversion Efficiency of 10.7. , 2020, ACS macro letters.

[31]  Chunhui Duan,et al.  The new era for organic solar cells: non-fullerene small molecular acceptors. , 2020, Science bulletin.

[32]  Wansun Kim,et al.  Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms , 2020 .

[33]  Y. Zou,et al.  High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition. , 2020, ACS applied materials & interfaces.

[34]  H. Haneef,et al.  Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices , 2020, Journal of Materials Chemistry C.

[35]  Shangfeng Yang,et al.  18% Efficiency organic solar cells. , 2020, Science bulletin.

[36]  F. Huang,et al.  Polymer Pre‐Aggregation Enables Optimal Morphology and High Performance in All‐Polymer Solar Cells , 2020, Solar RRL.

[37]  Wenkai Zhong,et al.  Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability , 2019, Nano Energy.

[38]  Bryon W. Larson,et al.  Simultaneously Improved Efficiency and Stability in All-Polymer Solar Cells by a P–i–N Architecture , 2019, ACS Energy Letters.

[39]  X. Gu,et al.  Alkyl Chain Length Effects of Polymer Donors on the Morphology and Device Performance of Polymer Solar Cells with Different Acceptors , 2019, Advanced Energy Materials.

[40]  T. Park,et al.  Improving the Photovoltaic Performance and Mechanical Stability of Flexible All-Polymer Solar Cells via Tailoring Intermolecular Interactions , 2019, Chemistry of Materials.

[41]  Kealan J. Fallon,et al.  Discerning Bulk and Interfacial Polarons in a Dual Electron Donor/Acceptor Polymer , 2019, The journal of physical chemistry letters.

[42]  Bumjoon J. Kim,et al.  Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. , 2019, Chemical reviews.

[43]  G. Wang,et al.  All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects. , 2019, Angewandte Chemie.

[44]  Zhixiang Wei,et al.  Correlations between Performance of Organic Solar Cells and Film‐Depth‐Dependent Optical and Electronic Variations , 2019, Advanced Optical Materials.

[45]  Yongfang Li,et al.  A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells , 2019, Energy & Environmental Science.

[46]  H. Yao,et al.  Toward Efficient Polymer Solar Cells Processed by a Solution‐Processed Layer‐By‐Layer Approach , 2018, Advanced materials.

[47]  C. McNeill,et al.  Application of an A-A'-A-Containing Acceptor Polymer in Sequentially Deposited All-Polymer Solar Cells. , 2018, ACS applied materials & interfaces.

[48]  C. Brabec,et al.  Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. , 2018, Journal of the American Chemical Society.

[49]  M. Ford,et al.  Thermally Stable All‐Polymer Solar Cells with High Tolerance on Blend Ratios , 2018 .

[50]  Yongfang Li,et al.  Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells. , 2017, Angewandte Chemie.

[51]  Ling Zhou,et al.  Film‐Depth‐Dependent Light Absorption and Charge Transport for Polymer Electronics: A Case Study on Semiconductor/Insulator Blends by Plasma Etching , 2016 .

[52]  Bumjoon J. Kim,et al.  From Fullerene-Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control. , 2016, Accounts of chemical research.

[53]  Yang Yang,et al.  Capacitance Spectroscopy of Light Induced Trap States in Organic Solar Cells , 2016 .

[54]  X. Zhan,et al.  Layer‐by‐Layer Processed Organic Solar Cells , 2016 .

[55]  Bumjoon J. Kim,et al.  Correlation between Phase-Separated Domain Sizes of Active Layer and Photovoltaic Performances in All-Polymer Solar Cells , 2016 .

[56]  Daisuke Mori,et al.  Recent research progress of polymer donor/polymer acceptor blend solar cells , 2016 .

[57]  Bumjoon J. Kim,et al.  High‐Performance All‐Polymer Solar Cells Via Side‐Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology , 2015, Advanced materials.

[58]  J. Behrends,et al.  Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in All‐Polymer Solar Cells , 2014 .

[59]  James C. Blakesley,et al.  Towards reliable charge-mobility benchmark measurements for organic semiconductors , 2014 .

[60]  Robert P. H. Chang,et al.  Morphology‐Performance Relationships in High‐Efficiency All‐Polymer Solar Cells , 2014 .

[61]  Jianhui Hou,et al.  Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State , 2012 .

[62]  Christopher R. McNeill,et al.  Morphology of all-polymer solar cells , 2012 .

[63]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[64]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[65]  Ingo Riedel,et al.  Effect of Temperature and Illumination on the Electrical Characteristics of Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2004 .

[66]  R. Herberholz,et al.  Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions , 1996 .