Macroalgae in biofuel production

The conversion processes of macroalgae for biofuels can be divided into thermochemical (dry) and microbiological (wet) processes. The chemical composition of macroalgae together with the pre‐treatment method, conversion conditions, and the characteristics of the microbes involved (wet processes) determine the yield and the properties of the biofuel produced. Macroalgae are often rich in carbohydrates, and therefore well suited for biogas, biobutanol and bioethanol productions. The content of triacylglycerols (TAGs) is the best indicator for the suitability of the alga for biodiesel production. TAGs have a high conversion rate to biodiesel, high percentage of fatty acids, and they lack phosphorus, sulfur and nitrogen. Macroalgae can have high metal concentrations, which can have an impact on conversion processes: metals may inhibit or catalyse the processes. High sulfur (especially in green algae) and nitrogen contents are also characteristic to macroalgae, and may be problematic in the production of biogas (NH3‐toxicity) and the use of the oil and biodiesel (high concentrations of H2S and NOx‐compounds). Macroalgae have proven to be suitable material for conversion processes, but further optimization of the processes is needed. At present, macroalgae are not economically, or in many cases not even environmentally, sustainable material when the whole production chain is considered. In this review we summarize information on the chemical composition of macroalgae in a prospect of biofuel production, and the current situation in the field of macroalgal‐based biofuel production.

[1]  S. Horn,et al.  Ethanol production from seaweed extract , 2000, Journal of Industrial Microbiology and Biotechnology.

[2]  Svein Jarle Horn,et al.  Bioenergy from brown seaweeds , 2000 .

[3]  Keat Teong Lee,et al.  A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development , 2010 .

[4]  R. Nys,et al.  Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. , 2014, Bioresource technology.

[5]  Vivekanand Vivekanand,et al.  Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw , 2011, Journal of Applied Phycology.

[6]  K. Gao,et al.  Use of macroalgae for marine biomass production and CO2 remediation: a review , 1994, Journal of Applied Phycology.

[7]  Kjetill Østgaard,et al.  Carbohydrate degradation and methane production during fermentation ofLaminaria saccharina (Laminariales, Phaeophyceae) , 1993, Journal of Applied Phycology.

[8]  Vipul J. Srivastava,et al.  Marine biomass program: anaerobic digestion systems development and stability study. Final report 1 Feb-31 Dec 82 , 1983 .

[9]  M. Lahaye,et al.  Structure and functional properties of ulvan, a polysaccharide from green seaweeds. , 2007, Biomacromolecules.

[10]  David G. Mann,et al.  Algae: An Introduction to Phycology , 1996 .

[11]  Algal biomass anaerobic biodegradability , 2013, Journal of Applied Phycology.

[12]  Jonas Dahl,et al.  Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. , 2011, Bioresource technology.

[13]  Marika Murto,et al.  Exploring strategies for seaweed hydrolysis: Effect on methane potential and heavy metal mobilisation , 2012 .

[14]  K. Mann,et al.  Seaweeds: Their Productivity and Strategy for Growth , 1973, Science.

[15]  W. A. P. Black,et al.  The seasonal variation in weight and chemical composition of the common British Laminariaceae , 1950, Journal of the Marine Biological Association of the United Kingdom.

[16]  K. Nisizawa,et al.  Incorporation of14C-radioactivity into various lipid classes at different growth-stages of culturedLaminaria japonica , 1992, Journal of Applied Phycology.

[17]  W. Huijgen,et al.  Opportunities and challenges for seaweed in the biobased economy. , 2014, Trends in biotechnology.

[18]  M. Demirbas,et al.  IMPORTANCE OF ALGAE OIL AS A SOURCE OF BIODIESEL , 2011 .

[19]  F. Leipold,et al.  Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol--comparison of five pretreatment technologies. , 2013, Bioresource technology.

[20]  H. Hirata,et al.  Effect of Salinity on the Growth and Fatty Acid Composition of Ulva pertusa Kjellman (Chlorophyta) , 1994 .

[21]  B. Carpentier,et al.  Anaerobic digestion of flotation sludges from the alginic acid extraction process , 1988 .

[22]  B. Basu,et al.  Determination of Polyunsaturated Fatty Esters (PUFA) in Biodiesel by GC/GC–MS and 1H-NMR Techniques , 2011 .

[23]  E. Chmielewská,et al.  BIOACCUMULATION OF HEAVY METALS BY GREEN ALGAE CLADOPHORA GRAMERATA IN A REFINERY SEWAGE LAGOON , 2001 .

[24]  Xiumin Jiang,et al.  Research on Pyrolysis Characteristics of Seaweed , 2007 .

[25]  J. Onwudili,et al.  Macroalgae supercritical water gasification combined with nutrient recycling for microalgae cultivation , 2013 .

[26]  M. Huesemann,et al.  Acetone-butanol fermentation of marine macroalgae. , 2012, Bioresource technology.

[27]  Brandon A Yoza,et al.  The analysis of macroalgae biomass found around Hawaii for bioethanol production , 2013, Environmental technology.

[28]  M. Hupa,et al.  Combustion Behavior of Algal Biomass: Carbon Release, Nitrogen Release, and Char Reactivity , 2014 .

[29]  A. López-Contreras,et al.  Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. , 2013, Bioresource technology.

[30]  Kjetill Østgaard,et al.  Anaerobic digestion of Laminaria spp. and Ascophyllum nodosum and application of end products , 1987 .

[31]  Christine Nicole S. Santos,et al.  An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae , 2012, Science.

[32]  L. Laurens,et al.  Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics , 2010 .

[33]  Karla J. McDermid,et al.  Nutritional composition of edible Hawaiian seaweeds , 2003, Journal of Applied Phycology.

[34]  G. Napolitano THE RELATIONSHIP OF LIPIDS WITH LIGHT AND CHLOROPHYLL MEASUREMENTS IN FRESHWATER ALGAE AND PERIPHYTON 1 , 1994 .

[35]  I. Kulikova,et al.  Lipids of two species of brown algae of the genusLaminaria , 2005, Chemistry of Natural Compounds.

[36]  P. Pavan,et al.  Anaerobic co-digestion of sewage sludge: Application to the macroalgae from the Venice lagoon , 1996 .

[37]  R. McCourt,et al.  Green algae and the origin of land plants. , 2004, American journal of botany.

[38]  Young‐Kwon Park,et al.  The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. , 2011, Bioresource technology.

[39]  Douglas C. Elliott,et al.  Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors , 2014 .

[40]  J. Fleurence,et al.  Fatty acids from 11 marine macroalgae of the French Brittany coast , 1994, Journal of Applied Phycology.

[41]  V. Gunaseelan Anaerobic digestion of biomass for methane production: A review , 1997 .

[42]  Yong‐Su Jin,et al.  Marine macroalgae: an untapped resource for producing fuels and chemicals. , 2013, Trends in biotechnology.

[43]  S. Horn,et al.  Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes , 1997, Journal of Applied Phycology.

[44]  I. Donnison,et al.  Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. , 2011, Bioresource technology.

[45]  M. Stanley,et al.  Biogas from Macroalgae: is it time to revisit the idea? , 2012, Biotechnology for Biofuels.

[46]  Paz Robert,et al.  Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera , 2009 .

[47]  Jae-Hwa Lee,et al.  Ethanol fermentation for main sugar components of brown-algae using various yeasts , 2012 .

[48]  D. Yang,et al.  The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. , 2009, Bioresource technology.

[49]  E. Dere,et al.  The determination of total protein, total soluble carbohydrate and pigment contents of some macroalgae collected from Gemlik-Karacaali (Bursa) and Erdek-Ormanli (Balikesir) in the Sea of Marmara, Turkey , 2003 .

[50]  Philippe Morand,et al.  Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation , 1997, Journal of Applied Phycology.

[51]  U. Karsten,et al.  Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships , 2002 .

[52]  D. P. Chynoweth,et al.  Biological gasification of marine algae , 1987 .

[53]  Tijs M. Lammens,et al.  Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals , 2012 .

[54]  K. Nisizawa,et al.  Incorporation of 14C-radioactivity into lipid classes at different maturity of Laminaria japonica Aresch. cultured under natural and partially controlled conditions , 1993, Hydrobiologia.

[55]  A. Galston Plant Physiology , 1967, Nature.

[56]  Howland D. T. Jones,et al.  Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. , 2012, Analytical chemistry.

[57]  Arnaud Hélias,et al.  Life cycle assessment of biomethane from offshore‐cultivated seaweed , 2012 .

[58]  M. Othman,et al.  Two-Phase Thermophilic Acidification and Mesophilic Methanogenesis Anaerobic Digestion of Waste-Activated Sludge , 2008 .

[59]  Hang-sik Shin,et al.  Optimization of combined (acid+thermal) pretreatment for fermentative hydrogen production from Lam , 2011 .

[60]  S. Khotimchenko Variations in lipid composition among different developmental stages of Gracilaria verrucosa (Rhodophyta) , 2006 .

[61]  V. J. Chapman Seaweeds and their uses , 1950 .

[62]  Paul T. Williams,et al.  A parametric study on supercritical water gasification of Laminaria hyperborea: a carbohydrate-rich macroalga. , 2014, Bioresource technology.

[63]  P. Nichols,et al.  Seasonal Lipid Composition in Macroalgae of the Northeastern Pacific Ocean , 2002 .

[64]  N. Molin,et al.  End product inhibition in methane fermentations: Effects of carbon dioxide and methane on methanogenic bacteria utilizing acetate , 1981, European journal of applied microbiology and biotechnology.

[65]  D. Robledo,et al.  Chemical and Mineral Composition of Six Potentially Edible Seaweed Species of Yucatán , 1997 .

[66]  J. Spivey,et al.  Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. , 2007, Chemical Society reviews.

[67]  Bingwen Yan,et al.  Production of algae-based biodiesel using the continuous catalytic Mcgyan process. , 2011, Bioresource technology.

[68]  Hang-Sik Shin,et al.  Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. , 2011, Bioresource technology.

[69]  Roger H. Charlier,et al.  Anaerobic Digestion of Ulva sp. 3. Liquefaction Juices Extraction by Pressing and a Technico-Economic Budget , 2006, Journal of Applied Phycology.

[70]  P. Risé,et al.  Marine macroalgae analyzed by mass spectrometry are rich sources of polyunsaturated fatty acids. , 2005, Journal of mass spectrometry : JMS.

[71]  G. Hansson Methane production from marine, green macro-algae , 1983 .

[72]  J. H. Ryther,et al.  Changes in agar and other chemical constituents of the seaweed gracilaria tikvahiae when used as a substrate in methane digesters , 1981 .

[73]  F. Blaine Metting,et al.  Biofuels from Microalgae and Seaweeds , 2010 .

[74]  Hee-Deung Park,et al.  Anaerobic digestibility of algal bioethanol residue. , 2012, Bioresource technology.

[75]  Jenny M. Jones,et al.  Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA , 2009 .

[76]  P. Morand,et al.  European bioconversion projects and realizations for macroalgal biomass : Saint-Cast-Le-Guildo (France) experiment , 2004, Hydrobiologia.

[77]  S. Khotimchenko,et al.  Fatty Acids of Marine Algae from the Pacific Coast of North California , 2002 .

[78]  H. Carrère,et al.  French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products. , 2013, Bioresource technology.

[79]  J. Mauseth Botany : An Introduction to Plant Biology , 1991 .

[80]  D. Legrand,et al.  Advances in lactoferrin research. , 2009, Biochimie.

[81]  Hang-sik Shin,et al.  Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures , 2011 .

[82]  Masao Ohno,et al.  World seaweed utilisation: An end-of-century summary , 1999, Journal of Applied Phycology.

[83]  G. Kirst Low MW carbohydrates and ions in rhodophyceae: Quantitative measurement of floridoside and digeneaside , 1980 .

[84]  Kyung A Jung,et al.  Potentials of macroalgae as feedstocks for biorefinery. , 2013, Bioresource technology.

[85]  Heike Freud,et al.  Plant Biochemistry And Molecular Biology , 2016 .

[86]  E. D. Obluchinskaia [Comparative chemical composition of the Barents Sea brown algae]. , 2008, Prikladnaia biokhimiia i mikrobiologiia.

[87]  Kiyohiko Nakasaki,et al.  Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides , 2011 .

[88]  Christine Nicole S. Santos,et al.  Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform , 2013, Nature.

[89]  K. Mann,et al.  Seaweeds: Their environment, biogeography, and ecophysiology , 1991 .

[90]  Maurycy Daroch,et al.  Recent advances in liquid biofuel production from algal feedstocks , 2013 .

[91]  S. M. Renaud,et al.  Seasonal Variation in the Chemical Composition of Tropical Australian Marine Macroalgae , 2006, Journal of Applied Phycology.

[92]  Mark P. McHenry,et al.  Integrated macroalgae production for sustainable bioethanol, aquaculture and agriculture in Pacific island nations , 2011 .

[93]  T. Zvyagintseva,et al.  Polysaccharide and lipid composition of the brown seaweed Laminaria gurjanovae , 2007, Russian Journal of Bioorganic Chemistry.

[94]  S. Araki,et al.  Notes on the Lipid Classes and Fatty Acid Composition of Porphyra perforata , 1996 .

[95]  M. Lamare,et al.  Calorific content of New Zealand marine macrophytes , 2001 .

[96]  U. Karsten,et al.  Floridoside, L-Isofloridoside, and D-Isofloridoside in the Red Alga Porphyra columbina (Seasonal and Osmotic Effects) , 1993, Plant physiology.

[97]  Walter Klöpffer,et al.  Life cycle assessment , 1997, Environmental science and pollution research international.

[98]  Y. J. Kim,et al.  Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. , 2012, Bioresource technology.

[99]  Alain A. Vertès,et al.  Biomass to Biofuels: Strategies for Global Industries , 2011 .

[100]  Peng Wang,et al.  Study on saccharification techniques of seaweed wastes for the transformation of ethanol , 2011 .

[101]  S. Ghosh,et al.  Two-phase anaerobic degestion , 1978 .

[102]  K. Bird,et al.  Seaweed Cultivation for Renewable Resources , 1987 .

[103]  W. Chu,et al.  Fatty Acid Composition of Some Malaysian Seaweeds , 1970 .

[104]  Rishi Gupta,et al.  Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. , 2013, Bioresource technology.

[105]  M. Hanisak METHANE PRODUCTION FROM THE RED SEAWEED GRACILARIA TIKVAHIAE , 1981 .

[106]  P. Risé,et al.  Marine Macroalgae as Sources of Polyunsaturated Fatty Acids , 2006, Plant foods for human nutrition.

[107]  G. Knothe Improving biodiesel fuel properties by modifying fatty ester composition , 2009 .

[108]  Sung-Koo Kim,et al.  Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica , 2011, Bioprocess and Biosystems Engineering.

[109]  J. Yanik,et al.  Hydrothermal conversion of seaweeds in a batch autoclave , 2011 .

[110]  Michele Aresta,et al.  Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study , 2005 .

[111]  Shaobin Wang,et al.  Combustion Characteristics of Seaweed Biomass. 1. Combustion Characteristics of Enteromorpha clathrata and Sargassum natans , 2009 .

[112]  Susanne B. Jones,et al.  Macroalgae as a Biomass Feedstock: A Preliminary Analysis , 2010 .

[113]  G. A. Thompson,et al.  Lipids and membrane function in green algae. , 1996, Biochimica et biophysica acta.

[114]  K. Vårum,et al.  Seasonal and geographical variation in the chemical composition of the red alga Palmaria palmata (L.) Kuntze , 2004 .

[115]  R. Newman Promotion of the use of energy from renewable sources , 2014 .

[116]  E. Fuente,et al.  Conventional and microwave pyrolysis of a macroalgae waste from the Agar-Agar industry. Prospects for bio-fuel production. , 2014, Bioresource technology.

[117]  É. Deslandes,et al.  Optimization of floridoside production in the red alga Mastocarpus stellatus: pre-conditioning, extraction and seasonal variations , 2007 .

[118]  S. Khotimchenko,et al.  Effect of solar irradiance on lipids of the green alga Ulva fenestrata Postels et Ruprecht , 2004 .

[119]  M. Ishikawa,et al.  Seasonal variation in the lipid content of culturedLaminaria japonica: fatty acids, sterols, β-carotene and tocopherol , 1994, Journal of Applied Phycology.

[120]  X. Briand,et al.  Ulva, stranded algae: a way of depollution through methanization. , 1987 .

[121]  S. Kawai,et al.  Strategies for the production of high concentrations of bioethanol from seaweeds , 2013, Bioengineered.

[122]  K. Oh,et al.  Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. , 2013, Bioresource technology.

[123]  N. Sanina,et al.  The Effect of Seasonal Shifts in Temperature on the Lipid Composition of Marine Macrophytes , 2004, Russian Journal of Plant Physiology.

[124]  Michele Aresta,et al.  Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction , 2005 .

[125]  M. Hofmann,et al.  Lipid and Fatty Acid Composition of the Marine Brown Alga Dictyopteris membranacea , 1997 .

[126]  Junhai Liu,et al.  Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis. , 2012, Bioresource technology.

[127]  H. Araki,et al.  Seaweed biomass of the Philippines: Sustainable feedstock for biogas production , 2014 .

[128]  J. M. Park,et al.  Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3. , 2013, Bioresource technology.

[129]  George Marsh Small wonders: biomass from algae , 2009 .

[130]  Ángeles Cancela,et al.  Macroalgae: Raw material for biodiesel production , 2011 .

[131]  I. Kulikova,et al.  Lipids of Different Parts of the Lamina of Laminaria japonica Aresch. , 2000 .

[132]  P. Rupérez,et al.  Mineral content of edible marine seaweeds , 2002 .

[133]  Ho Nam Chang,et al.  Ethanol production from marine algal hydrolysates using Escherichia coli KO11. , 2011, Bioresource technology.

[134]  J. Harwood,et al.  Lipids and lipid metabolism in eukaryotic algae. , 2006, Progress in lipid research.

[135]  J. Beardall,et al.  Molecular Activities of Plant Cells: An Introduction to Plant Biochemistry , 1991 .

[136]  A. Sfriso,et al.  Heavy metal contamination in the seaweeds of the Venice lagoon. , 2002, Chemosphere.

[137]  J. West,et al.  LOW MOLECULAR WEIGHT CARBOHYDRATE PATTERNS IN THE BANGIOPHYCEAE (RHODOPHYTA) , 1999 .

[138]  Paula Velasquez,et al.  Botany , 1870, Nature.

[139]  Simone Bastianoni,et al.  Biofuel potential production from the Orbetello lagoon macroalgae : A comparison with sunflower feedstock , 2008 .

[140]  L. M. Srivastava,et al.  VARIATIONS IN FLORIDOSIDE CONTENT AND FLORIDOSIDE PHOSPHATE SYNTHASE ACTIVITY IN PORPHYRA PERFORATA (RHODOPHYTA) 1 , 1993 .

[141]  M. Lenzi,et al.  Anaerobic digestion of macroalgal biomass and sediments sourced from the Orbetello lagoon, Italy , 2012 .

[142]  S. Horn,et al.  Production of ethanol from mannitol by Zymobacter palmae , 2000, Journal of Industrial Microbiology and Biotechnology.

[143]  J. Harwood,et al.  The versatility of algae and their lipid metabolism. , 2009, Biochimie.

[144]  T. A. Davis,et al.  A review of the biochemistry of heavy metal biosorption by brown algae. , 2003, Water research.

[145]  Jianjun Du,et al.  The production of butanol from Jamaica bay macro algae , 2012 .

[146]  D. Karakashev,et al.  Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. , 2013, Bioresource technology.

[147]  Marika Murto,et al.  Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. , 2010, Journal of environmental management.

[148]  J. Ryther,et al.  Cultivation and conversion of marine macroalgae. [Gracilaria and Ulva] , 1984 .

[149]  T. Norton,et al.  Seaweeds and their Uses. , 1981 .

[150]  J. Harwood,et al.  Lipid composition of the brown algae fucus vesiculosus and Ascophyllum nodosum , 1992 .

[151]  Iain S. Donnison,et al.  Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments , 2009, Journal of Applied Phycology.

[152]  S. Kawai,et al.  Production of ethanol from mannitol by the yeast strain Saccharomyces paradoxus NBRC 0259. , 2013, Journal of bioscience and bioengineering.

[153]  R. P. John,et al.  Macroalgae and their potential for biofuel. , 2011 .

[154]  David P. Chynoweth,et al.  Effects of marine algal proximate composition on methane yields , 1990, Journal of Applied Phycology.

[155]  A. Vergara-Fernández,et al.  Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. , 2008 .

[156]  J. Ryther,et al.  The effect of nitrogen content on methane production by the marine algae Gracilaria tikvahiae and Ulva sp. , 1984 .

[157]  T. Pickering,et al.  Intentional introductions of commercially harvested alien seaweeds , 2007 .

[158]  Patrick J. McGinn,et al.  Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography–high-resolution mass spectrometry , 2011, Analytical and bioanalytical chemistry.

[159]  T. Bridgeman,et al.  Classification of macroalgae as fuel and its thermochemical behaviour. , 2008, Bioresource technology.

[160]  B. Darcy-Vrillon Nutritional aspects of the developing use of marine macroalgae for the human food industry , 1993 .