A mixture of experts approach to handle ambiguities in parameter identification problems in material modeling
暂无分享,去创建一个
[1] Bernhard A. Schrefler,et al. Application of Artificial Neural Network for Identification of Parameters of a Constitutive Law for Soils , 2003, IEA/AIE.
[2] Zoubin Ghahramani,et al. Solving inverse problems using an EM approach to density estimation , 1993 .
[3] J. Chaboche,et al. On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept , 1983 .
[4] Ch. Tsakmakis,et al. Determination of constitutive properties fromspherical indentation data using neural networks. Part i:the case of pure kinematic hardening in plasticity laws , 1999 .
[5] R. Taylor,et al. Thermomechanical analysis of viscoelastic solids , 1970 .
[6] Geoffrey E. Hinton,et al. Adaptive Mixtures of Local Experts , 1991, Neural Computation.
[7] Dimitris N. Metaxas,et al. Learning Ambiguities Using Bayesian Mixture of Experts , 2006, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06).
[8] David J. C. MacKay,et al. A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.
[9] Frank Klawonn,et al. Detecting Ambiguities in Regression Problems using TSK Models , 2006, Soft Comput..
[10] Bernhard A. Schrefler,et al. Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading , 2002 .
[11] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[12] Volker Tresp,et al. Mixtures of Gaussian Processes , 2000, NIPS.
[13] Genki Yagawa,et al. Neural networks in computational mechanics , 1996 .
[14] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[15] Jan Pagenkopf,et al. Bestimmung der plastischen Anisotropie von Blechwerkstoffen durch ortsaufgelöste Simulationen auf Gefügeebene , 2018 .
[16] Material‐based process‐chain optimization in metal forming , 2017 .
[17] Joseph N. Wilson,et al. Twenty Years of Mixture of Experts , 2012, IEEE Transactions on Neural Networks and Learning Systems.
[18] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[19] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[20] Michael I. Jordan,et al. Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..
[21] Carsten Könke,et al. An inverse parameter identification procedure assessing the quality of the estimates using Bayesian neural networks , 2011, Appl. Soft Comput..
[22] Thomas J. Santner,et al. The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.
[23] Christopher M. Bishop,et al. Bayesian Hierarchical Mixtures of Experts , 2002, UAI.
[24] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[25] Rolf Mahnken,et al. Identification of Material Parameters for Constitutive Equations , 2004 .
[26] D. Helm. Stress computation in finite thermoviscoplasticity , 2006 .
[27] C. Bishop. Mixture density networks , 1994 .
[28] Rolf Mahnken,et al. A unified approach for parameter identification of inelastic material models in the frame of the finite element method , 1996 .
[29] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[30] Rolf Mahnken,et al. Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations , 1996 .
[31] Jocelyn Sietsma,et al. Creating artificial neural networks that generalize , 1991, Neural Networks.
[32] Michael I. Jordan,et al. Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.
[33] Ch. Tsakmakis,et al. Determination of constitutive properties fromspherical indentation data using neural networks. Part ii:plasticity with nonlinear isotropic and kinematichardening , 1999 .
[34] Steve R. Waterhouse,et al. Bayesian Methods for Mixtures of Experts , 1995, NIPS.