Adaptive two- and three-dimensional multiresolution computations of resistive magnetohydrodynamics

Fully adaptive computations of the resistive magnetohydrodynamic (MHD) equations are presented in two and three space dimensions using a finite volume discretization on locally refined dyadic grids. Divergence cleaning is used to control the incompressibility constraint of the magnetic field. For automatic grid adaptation a cell-averaged multiresolution analysis is applied which guarantees the precision of the adaptive computations, while reducing CPU time and memory requirements. Implementation issues of the open source code CARMEN-MHD are discussed. To illustrate its precision and efficiency different benchmark computations including shock-cloud interaction and magnetic reconnection are presented.

[1]  K. Germaschewski,et al.  Three-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinement , 2004 .

[2]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[3]  Anna Karina Fontes Gomes,et al.  An adaptive multiresolution method for ideal magnetohydrodynamics using divergence cleaning with parabolic-hyperbolic correction , 2015, 1508.02600.

[4]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[5]  Sônia M. Gomes,et al.  A Fully Adaptive Multiresolution Scheme for Shock Computations , 2001 .

[6]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[7]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[8]  Stephen C. Jardin,et al.  Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas , 2012, J. Comput. Phys..

[9]  Nira Dyn,et al.  Adaptive multiresolution analysis based on anisotropic triangulations , 2012, Math. Comput..

[10]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[11]  S. Morley,et al.  Challenges and Opportunities in Magnetospheric Space Weather Prediction , 2020, Space Weather.

[12]  Ian Hutchinson,et al.  Principles of Magnetohydrodynamics , 2005 .

[13]  Kai Schneider,et al.  Comparison of Adaptive Multiresolution and Adaptive Mesh Refinement Applied to Simulations of the Compressible Euler Equations , 2015, SIAM J. Sci. Comput..

[14]  Rony Keppens,et al.  GRADSPMHD: A parallel MHD code based on the SPH formalism , 2014, Comput. Phys. Commun..

[15]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[16]  Ryo Onishi,et al.  Data Compression for Environmental Flow Simulations , 2018, ArXiv.

[17]  U. Ziegler,et al.  The NIRVANA code: Parallel computational MHD with adaptive mesh refinement , 2008, Comput. Phys. Commun..

[18]  Michael Dumbser,et al.  Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-Stokes and resistive MHD equations , 2016, Comput. Phys. Commun..

[19]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[20]  C. Fang,et al.  A new MHD code with adaptive mesh refinement and parallelization for astrophysics , 2012, Comput. Phys. Commun..

[21]  O. Vasilyev,et al.  Wavelet Methods in Computational Fluid Dynamics , 2010 .

[22]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[23]  Francesco Miniati,et al.  A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .

[24]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[25]  Kai Schneider,et al.  Adaptive multiresolution methods , 2011 .

[26]  A. Harti Discrete multi-resolution analysis and generalized wavelets , 1993 .

[27]  Barna L. Bihari,et al.  Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..

[28]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Frontmatter , 2002 .

[29]  Sônia M. Gomes,et al.  Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods , 2013 .

[30]  Rony Touma,et al.  Central finite volume schemes with constrained transport divergence treatment for three-dimensional ideal MHD , 2006, J. Comput. Phys..

[31]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[32]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[33]  Paul R. Woodward,et al.  A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .

[34]  Michael Dumbser,et al.  Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting , 2014, 1412.0081.

[35]  P. Hopkins,et al.  Accurate, meshless methods for magnetohydrodynamics , 2015, 1505.02783.

[36]  Andrea Mignone,et al.  A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme , 2009, J. Comput. Phys..

[37]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[38]  O. Mendes,et al.  Ideal and Resistive Magnetohydrodynamic Two-Dimensional Simulation of the Kelvin-Helmholtz Instability in the Context of Adaptive Multiresolution Analysis , 2017 .

[39]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[40]  Harry E. Petschek,et al.  Magnetic Field Annihilation , 1963 .

[41]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[42]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[43]  Kai Schneider,et al.  Adaptive multiresolution or adaptive mesh refinement? A case study for 2D Euler equations , 2009, ESAIM: Proceedings.

[44]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[45]  X. Feng,et al.  Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere , 2020 .

[46]  Stefaan Poedts,et al.  Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .

[47]  Peter V. Coveney,et al.  Survey of Multiscale and Multiphysics Applications and Communities , 2012, Computing in Science & Engineering.

[48]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[49]  Kai Schneider,et al.  On the verification of adaptive three-dimensional multiresolution computations of the magneto hydrodynamic equations , 2018, Journal of Applied Nonlinear Dynamics.

[50]  A. Harten Multiresolution representation of data: a general framework , 1996 .

[51]  Kai Schneider,et al.  Wavelet-based parallel dynamic mesh adaptation for magnetohydrodynamics in the AMROC framework , 2019, Computers & Fluids.

[52]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[53]  Rony Keppens,et al.  A multidimensional grid-adaptive relativistic magnetofluid code , 2008, Comput. Phys. Commun..

[54]  Tamas I. Gombosi,et al.  Achievements and Challenges in the Science of Space Weather , 2017 .

[55]  Nira Dyn,et al.  Multiresolution Schemes on Triangles for Scalar Conservation Laws , 2000 .

[56]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[57]  Ralf Deiterding,et al.  An ideal compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh refinement , 2018, Computers & Fluids.