An Error Estimate for the Signorini Problem with Coulomb Friction Approximated by Finite Elements
暂无分享,去创建一个
[1] Faker Ben Belgacem,et al. Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..
[2] J. Lions,et al. Les inéquations en mécanique et en physique , 1973 .
[3] A. Klarbring,et al. FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE , 1988 .
[4] J. T. Oden,et al. Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws , 1987 .
[5] Christof Eck,et al. Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .
[6] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[7] Patrice Coorevits,et al. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..
[8] Jaroslav Haslinger,et al. Numerical methods for unilateral problems in solid mechanics , 1996 .
[9] F. B. Belgacem,et al. EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .
[10] Yves Renard,et al. Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers , 2006 .
[11] Meir Shillor,et al. On friction problems with normal compliance , 1989 .
[12] Remi Rocca,et al. Numerical Analysis of Quasi-Static Unilateral Contact Problems with Local Friction , 2001, SIAM J. Numer. Anal..
[13] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[14] Yves Renard,et al. A uniqueness criterion for the Signorini problem with Coulomb friction , 2006 .
[15] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[16] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[17] Yves Renard. A Uniqueness Criterion for the Signorini Problem with Coulomb Friction , 2006, SIAM J. Math. Anal..
[18] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[19] Vladimir Maz’ya,et al. Theory of multipliers in spaces of differentiable functions , 1983 .
[20] Faker Ben Belgacem,et al. Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..
[21] L. Andersson,et al. Existence Results for Quasistatic Contact Problems with Coulomb Friction , 2000 .
[22] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[23] Patrick Laborde,et al. Fixed point strategies for elastostatic frictional contact problems , 2008 .
[24] W. Han,et al. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .
[25] T. Laursen. Computational Contact and Impact Mechanics , 2003 .
[26] M. Cocu,et al. Existence of solutions of Signorini problems with friction , 1984 .
[27] W. Han,et al. Contact problems in elasticity , 2002 .
[28] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[29] J. Oden,et al. Contact problems in elasticity , 1988 .
[30] D. Adams,et al. Review: V. G. Maz′ya and T. O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions , 1986 .
[31] J. Jarusek,et al. EXISTENCE RESULTS FOR THE STATIC CONTACT PROBLEM WITH COULOMB FRICTION , 1998 .
[32] Faker Ben Belgacem,et al. The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.
[33] J. Oden,et al. On some existence and uniqueness results in contact problems with nonlocal friction , 1982 .
[34] Patrick Hild,et al. A mixed finite element method and solution multiplicity for Coulomb frictional contact , 2003 .
[35] Barbara I. Wohlmuth,et al. An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..
[36] Jaroslav Haslinger,et al. Approximation of the signorini problem with friction, obeying the coulomb law , 1983 .
[37] Patrick Hild,et al. Non‐unique slipping in the coulomb friction model in two‐dimensional linear elasticity , 2004 .
[38] José Barros-Neto,et al. Problèmes aux limites non homogènes , 1966 .
[39] W. Ostachowicz,et al. Mixed finite element method for contact problems , 1984 .
[40] Patrick Hild,et al. Multiple solutions of stick and separation type in the Signorini model with Coulomb friction , 2005 .
[41] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[42] J. T. Oden,et al. Models and computational methods for dynamic friction phenomena , 1984 .
[43] Jaroslav Haslinger,et al. On the approximation of the Signorini problem with friction , 1984 .