Processable aqueous dispersions of graphene nanosheets.

[1]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[2]  Kang L. Wang,et al.  A chemical route to graphene for device applications. , 2007, Nano letters.

[3]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[4]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[5]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[6]  N. Kotov,et al.  Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. , 2007, Nano letters.

[7]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[8]  S. Stankovich,et al.  Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) , 2006 .

[9]  Zhiyong Tang,et al.  Biomedical Applications of Layer‐by‐Layer Assembly: From Biomimetics to Tissue Engineering , 2006 .

[10]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[11]  Sandip Niyogi,et al.  Solution properties of graphite and graphene. , 2006, Journal of the American Chemical Society.

[12]  Imre Dékány,et al.  Evolution of surface functional groups in a series of progressively oxidized graphite oxides , 2006 .

[13]  Dan Li,et al.  Processable stabilizer-free polyaniline nanofiber aqueous colloids. , 2005, Chemical communications.

[14]  S. Kirchmeyer,et al.  Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene) , 2005 .

[15]  A. B. Kaiser,et al.  Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. , 2005, The journal of physical chemistry. B.

[16]  Qi Wang,et al.  Properties, and Applications , 2005 .

[17]  Takuya Gotou,et al.  Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits , 2005 .

[18]  I. Dékány,et al.  Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer , 2005 .

[19]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[20]  P. Hammond Form and Function in Multilayer Assembly: New Applications at the Nanoscale , 2004 .

[21]  Yi Lin,et al.  Functionalized carbon nanotubes: properties and applications. , 2002, Accounts of chemical research.

[22]  M. Itkis,et al.  Chemistry of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[23]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[24]  J. Tour,et al.  Covalent chemistry of single-wall carbon nanotubes , 2002 .

[25]  Janos H. Fendler,et al.  Preparation and Characterization of Ultrathin Films Layer-by-Layer Self-Assembled from Graphite Oxide Nanoplatelets and Polymers , 2000 .

[26]  P. J. Ollivier,et al.  Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations , 1999 .

[27]  Jacek Klinowski,et al.  Structure of Graphite Oxide Revisited , 1998 .

[28]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[29]  Gero Decher,et al.  Toward Layered Polymeric Multicomposites , 1997 .

[30]  N. Kotov,et al.  Ultrathin graphite oxide–polyelectrolyte composites prepared by self‐assembly: Transition between conductive and non‐conductive states , 1996 .

[31]  V. Kisil Properties and Applications , 1994 .

[32]  Acknowledgements , 1992, Experimental Gerontology.

[33]  D. H. Everett Basic Principles of Colloid Science , 1988 .

[34]  R. Kaner,et al.  Processable aqueous dispersions of graphene nanosheets — Source link , 2022 .