A fixed-parameter algorithm for the directed feedback vertex set problem

The (parameterized) feedback vertex set problem on directed graphs, which we refer to as the dfvs problem, is defined as follows: given a directed graph G and a parameter k, either construct a feedback vertex set of at most k vertices in G or report that no such set exists. Whether or not the dfvs problem is fixed-parameter tractable has been a well-known open problem in parameterized computation and complexity, i.e., whether the problem can be solved in time f(k)nO(1) for some function f. In this paper we develop new algorithmic techniques that result in an algorithm with running time 4k k! nO(1) for the dfvs problem, thus showing that this problem is fixed-parameter tractable.

[1]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[2]  Abraham Silberschatz,et al.  Operating System Concepts , 1983 .

[3]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[4]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[5]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[6]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[7]  Michael R. Fellows,et al.  Fixed-parameter intractability , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[8]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[9]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set , 2007, STACS.

[10]  Rolf Niedermeier,et al.  Improved Fixed-Parameter Algorithms for Two Feedback Set Problems , 2005, WADS.

[11]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, WADS.

[12]  Hans L. Bodlaender,et al.  A Linear Kernel for Planar Feedback Vertex Set , 2008, IWPEC.

[13]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[14]  Michael J. Pelsmajer,et al.  Parameterized Algorithms for Feedback Vertex Set , 2004, IWPEC.

[15]  Charles E. Leiserson,et al.  Retiming synchronous circuitry , 1988, Algorithmica.

[16]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[17]  Rolf Niedermeier,et al.  Techniques for Practical Fixed-Parameter Algorithms , 2007, Comput. J..

[18]  Saket Saurabh,et al.  Parameterized algorithms for feedback set problems and their duals in tournaments , 2006, Theor. Comput. Sci..

[19]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[20]  Gregory Gutin,et al.  Some Parameterized Problems On Digraphs , 2008, Comput. J..

[21]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[22]  Peter B. Galvin,et al.  Operating System Concepts, 4th Ed. , 1993 .

[23]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[24]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[25]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[28]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests and Depth First Search , 1989, WADS.

[29]  Joseph Naor,et al.  Approximating Minimum Feedback Sets and Multicuts in Directed Graphs , 1998, Algorithmica.

[30]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2006, J. Discrete Algorithms.

[31]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[32]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, Theory of Computing Systems.

[33]  Saket Saurabh,et al.  Parameterized Complexity of Directed Feedback Set Problems in Tournaments , 2003, WADS.

[34]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.