Algorithms for ham-sandwich cuts

Given disjoint setsP1,P2, ...,Pd inRd withn points in total, ahamsandwich cut is a hyperplane that simultaneously bisects thePi. We present algorithms for finding ham-sandwich cuts in every dimensiond>1. Whend=2, the algorithm is optimal, having complexityO(n). For dimensiond>2, the bound on the running time is proportional to the worst-case time needed for constructing a level in an arrangement ofn hyperplanes in dimensiond−1. This, in turn, is related to the number ofk-sets inRd−1. With the current estimates, we get complexity close toO(n3/2) ford=3, roughlyO(n8/3) ford=4, andO(nd−1−a(d)) for somea(d)>0 (going to zero asd increases) for largerd. We also give a linear-time algorithm for ham-sandwich cuts inR3 when the three sets are suitably separated.

[1]  Leonidas J. Guibas,et al.  Points and triangles in the plane and halving planes in space , 1990, SCG '90.

[2]  Sinisa T. Vrecica,et al.  The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory, Ser. A.

[3]  Richard Cole,et al.  On k-Hulls and Related Problems , 1987, SIAM J. Comput..

[4]  Herbert Edelsbrunner,et al.  Computing a Ham-Sandwich Cut in Two Dimensions , 1986, J. Symb. Comput..

[5]  Jirí Matousek,et al.  Ham-sandwich cuts in Rd , 1992, STOC '92.

[6]  Dan E. Willard,et al.  Polygon Retrieval , 1982, SIAM journal on computing (Print).

[7]  Noga Alon,et al.  Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.

[8]  Jirí Matousek Construction of ɛ-nets , 1990, Discret. Comput. Geom..

[9]  Jirí Matousek,et al.  Randomized Optimal Algorithm for Slope Selection , 1991, Inf. Process. Lett..

[10]  J. Pach,et al.  An upper bound on the number of planar k-sets , 1989, 30th Annual Symposium on Foundations of Computer Science.

[11]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[12]  János Komlós,et al.  Sorting in c log n parallel sets , 1983, Comb..

[13]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[14]  Herbert Edelsbrunner,et al.  Counting triangle crossings and halving planes , 1993, SCG '93.

[15]  Jirí Matousek,et al.  Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.

[16]  Mikhail J. Atallah A Matching Problem in the Plane , 1985, J. Comput. Syst. Sci..

[17]  Herbert Edelsbrunner,et al.  Constructing Belts in Two-Dimensional Arrangements with Applications , 1986, SIAM J. Comput..

[18]  David M. Mount,et al.  A randomized algorithm for slope selection , 1992, Int. J. Comput. Geom. Appl..

[19]  Leonidas J. Guibas,et al.  Points and triangles in the plane and halving planes in space , 1991, Discret. Comput. Geom..

[20]  Nimrod Megiddo,et al.  Partitioning with Two Lines in the Plane , 1985, J. Algorithms.

[21]  N. Alon,et al.  Disjoint Simplices and Geometric Hypergraphs , 1989 .

[22]  Endre Szemerédi,et al.  An Optimal-Time Algorithm for Slope Selection , 1989, SIAM J. Comput..

[23]  William L. Steiger,et al.  Randomizing Optimal Geometric Algorithms , 1993, CCCG.

[24]  Imre Bárány,et al.  On the expected number of k-sets , 1994, Discret. Comput. Geom..