On the benefits of using GPUS to simulate shallow flows with finite volume schemes
暂无分享,去创建一个
[1] A. I. Vol'pert. THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .
[2] Martin Rumpf,et al. Graphics Processor Units: New Prospects for Parallel Computing , 2006 .
[3] Ricardo Baeza Yates,et al. Lenguajes y Sistemas Informáticos , 2002 .
[4] M. J. Castro,et al. Solving shallow-water systems in 2D domains using Finite Volume methods and multimedia SSE instructions , 2008 .
[5] Miguel Lastra,et al. Simulation of shallow-water systems using graphics processing units , 2009, Math. Comput. Simul..
[6] P. Floch. Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form , 1989 .
[7] John D. Owens,et al. GPU Computing , 2008, Proceedings of the IEEE.
[8] Ami Harten,et al. Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .
[9] Jostein R. Natvig,et al. Visual simulation of shallow-water waves , 2005, Simul. Model. Pract. Theory.
[10] Jostein R. Natvig,et al. Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..
[11] Barbara Chapman,et al. Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.
[12] C. Parés. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .
[13] M. J. Castro,et al. A parallel 2d finite volume scheme for solving systems of balance laws with nonconservative products: Application to shallow flows , 2006 .
[14] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[15] José Miguel Mantas,et al. Simulation of one-layer shallow water systems on multicore and CUDA architectures , 2010, The Journal of Supercomputing.
[16] Jens H. Krüger,et al. A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.
[17] Christer Sjöström,et al. State-of-the-art report , 1997 .
[18] José Miguel Mantas,et al. Two-Dimensional Compact Third-Order Polynomial Reconstructions. Solving Nonconservative Hyperbolic Systems Using GPUs , 2011, J. Sci. Comput..
[19] Manuel Jesús Castro Díaz,et al. High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems , 2009, J. Sci. Comput..
[20] Guido Walz. Romberg Type Cubature over Arbitrary Triangles , 1997 .
[21] G. D. Maso,et al. Definition and weak stability of nonconservative products , 1995 .