The Large Time-Frequency Analysis Toolbox 2.0

The Large Time Frequency Analysis Toolbox (LTFAT) is a modern Octave/Matlab toolbox for time-frequency analysis, synthesis, coefficient manipulation and visualization. It’s purpose is to serve as a tool for achieving new scientific developments as well as an educational tool. The present paper introduces main features of the second major release of the toolbox which includes: generalizations of the Gabor transform, the wavelets module, the frames framework and the real-time block processing framework.

[1]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[2]  M. Hampejs,et al.  Double Preconditioning for Gabor Frames , 2006, IEEE Transactions on Signal Processing.

[3]  P. Balázs Basic definition and properties of Bessel multipliers , 2005, math/0510091.

[4]  A. Bultheel,et al.  Computation of the fractional Fourier transform , 2004 .

[5]  Peter N. Heller,et al.  Theory of regular M-band wavelet bases , 1993, IEEE Trans. Signal Process..

[6]  E. T. S. E. Telecomunicación UVI WAVE , THE ULTIMATE TOOLBOX FOR WAVELET TRANSFORMS AND FILTER BANKS , 2006 .

[7]  Torsten Dau,et al.  Modulation filtering using an optimization approach to spectrogram reconstruction , 2011 .

[8]  Peter Balazs,et al.  Frames and Finite Dimensionality: Frame Transformation, Classification and Algorithms , 2008 .

[9]  I. Selesnick The Double Density DWT , 2001 .

[10]  Cagatay Candan,et al.  The discrete fractional Fourier transform , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[11]  Pavel Rajmic,et al.  Goertzel algorithm generalized to non-integer multiples of fundamental frequency , 2012, EURASIP J. Adv. Signal Process..

[12]  Richard Kronland-Martinet,et al.  A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .

[13]  P. Balázs,et al.  Canonical forms of unconditionally convergent multipliers☆ , 2013, Journal of mathematical analysis and applications.

[14]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[15]  Peter L. Søndergaard,et al.  A fast Griffin-Lim algorithm , 2013, 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[16]  Frank Kurth,et al.  Filter bank tree and M-band wavelet packet algorithms in audio signal processing , 1999, IEEE Trans. Signal Process..

[17]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[18]  R. Merry Wavelet theory and applications : a literature study , 2005 .

[19]  Nathanael Perraudin,et al.  Gabor dual windows using convex optimization , 2013 .

[20]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[21]  Bruno Torrésani,et al.  The Linear Time Frequency Analysis Toolbox , 2012, Int. J. Wavelets Multiresolution Inf. Process..

[22]  Mladen Victor Wickerhauser,et al.  Lectures On Wavelet Packet Algorithms , 1991 .

[23]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[24]  Carl Taswell Near-best basis selection algorithms with non-additive information cost functions , 1994, Proceedings of IEEE-SP International Symposium on Time- Frequency and Time-Scale Analysis.

[25]  M. Kowalski Sparse regression using mixed norms , 2009 .

[26]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[27]  Diana T. Stoeva,et al.  Invertibility of multipliers , 2009, 0911.2783.

[28]  Jae S. Lim,et al.  Signal estimation from modified short-time Fourier transform , 1983, ICASSP.

[29]  T. Strohmer,et al.  Gabor Analysis and Algorithms , 2012 .

[30]  Thibaud Necciari,et al.  The ERBlet transform: An auditory-based time-frequency representation with perfect reconstruction , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  Jean-Christophe Pesquet,et al.  Optimization of Synthesis Oversampled Complex Filter Banks , 2009, IEEE Transactions on Signal Processing.

[32]  L. Rabiner,et al.  The chirp z-transform algorithm , 1969 .

[33]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[34]  Arthur Petrosian,et al.  Wavelets in Signal and Image Analysis , 2001, Computational Imaging and Vision.

[35]  Nicki Holighaus,et al.  Theory, implementation and applications of nonstationary Gabor frames , 2011, J. Comput. Appl. Math..

[36]  Ivan W. Selesnick,et al.  On the Dual-Tree Complex Wavelet Packet and $M$-Band Transforms , 2008, IEEE Transactions on Signal Processing.

[37]  Matthieu Kowalski,et al.  Adapted and Adaptive Linear Time-Frequency Representations: A Synthesis Point of View , 2013, IEEE Signal Processing Magazine.

[38]  Thomas Grill,et al.  A Framework for Invertible, Real-Time Constant-Q Transforms , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[39]  G. Goertzel An Algorithm for the Evaluation of Finite Trigonometric Series , 1958 .

[40]  Helmut Bölcskei,et al.  Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..

[41]  Nicki Holighaus,et al.  Efficient Algorithms for Discrete Gabor Transforms on a Nonseparable Lattice , 2013, IEEE Transactions on Signal Processing.

[42]  Ivan W. Selesnick,et al.  The double-density dual-tree DWT , 2004, IEEE Transactions on Signal Processing.