The Large Time-Frequency Analysis Toolbox 2.0
暂无分享,去创建一个
Nicki Holighaus | Zdenek Prusa | Christoph Wiesmeyr | Peter L. Søndergaard | Péter Balázs | P. Balázs | N. Holighaus | P. Søndergaard | Zdeněk Průša | Christoph Wiesmeyr | Nicki Holighaus
[1] Haldun M. Özaktas,et al. The fractional fourier transform , 2001, 2001 European Control Conference (ECC).
[2] M. Hampejs,et al. Double Preconditioning for Gabor Frames , 2006, IEEE Transactions on Signal Processing.
[3] P. Balázs. Basic definition and properties of Bessel multipliers , 2005, math/0510091.
[4] A. Bultheel,et al. Computation of the fractional Fourier transform , 2004 .
[5] Peter N. Heller,et al. Theory of regular M-band wavelet bases , 1993, IEEE Trans. Signal Process..
[6] E. T. S. E. Telecomunicación. UVI WAVE , THE ULTIMATE TOOLBOX FOR WAVELET TRANSFORMS AND FILTER BANKS , 2006 .
[7] Torsten Dau,et al. Modulation filtering using an optimization approach to spectrogram reconstruction , 2011 .
[8] Peter Balazs,et al. Frames and Finite Dimensionality: Frame Transformation, Classification and Algorithms , 2008 .
[9] I. Selesnick. The Double Density DWT , 2001 .
[10] Cagatay Candan,et al. The discrete fractional Fourier transform , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).
[11] Pavel Rajmic,et al. Goertzel algorithm generalized to non-integer multiples of fundamental frequency , 2012, EURASIP J. Adv. Signal Process..
[12] Richard Kronland-Martinet,et al. A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .
[13] P. Balázs,et al. Canonical forms of unconditionally convergent multipliers☆ , 2013, Journal of mathematical analysis and applications.
[14] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[15] Peter L. Søndergaard,et al. A fast Griffin-Lim algorithm , 2013, 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.
[16] Frank Kurth,et al. Filter bank tree and M-band wavelet packet algorithms in audio signal processing , 1999, IEEE Trans. Signal Process..
[17] L. Cohen,et al. Time-frequency distributions-a review , 1989, Proc. IEEE.
[18] R. Merry. Wavelet theory and applications : a literature study , 2005 .
[19] Nathanael Perraudin,et al. Gabor dual windows using convex optimization , 2013 .
[20] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[21] Bruno Torrésani,et al. The Linear Time Frequency Analysis Toolbox , 2012, Int. J. Wavelets Multiresolution Inf. Process..
[22] Mladen Victor Wickerhauser,et al. Lectures On Wavelet Packet Algorithms , 1991 .
[23] R. Balan,et al. On signal reconstruction without phase , 2006 .
[24] Carl Taswell. Near-best basis selection algorithms with non-additive information cost functions , 1994, Proceedings of IEEE-SP International Symposium on Time- Frequency and Time-Scale Analysis.
[25] M. Kowalski. Sparse regression using mixed norms , 2009 .
[26] Z. Zalevsky,et al. The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .
[27] Diana T. Stoeva,et al. Invertibility of multipliers , 2009, 0911.2783.
[28] Jae S. Lim,et al. Signal estimation from modified short-time Fourier transform , 1983, ICASSP.
[29] T. Strohmer,et al. Gabor Analysis and Algorithms , 2012 .
[30] Thibaud Necciari,et al. The ERBlet transform: An auditory-based time-frequency representation with perfect reconstruction , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[31] Jean-Christophe Pesquet,et al. Optimization of Synthesis Oversampled Complex Filter Banks , 2009, IEEE Transactions on Signal Processing.
[32] L. Rabiner,et al. The chirp z-transform algorithm , 1969 .
[33] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[34] Arthur Petrosian,et al. Wavelets in Signal and Image Analysis , 2001, Computational Imaging and Vision.
[35] Nicki Holighaus,et al. Theory, implementation and applications of nonstationary Gabor frames , 2011, J. Comput. Appl. Math..
[36] Ivan W. Selesnick,et al. On the Dual-Tree Complex Wavelet Packet and $M$-Band Transforms , 2008, IEEE Transactions on Signal Processing.
[37] Matthieu Kowalski,et al. Adapted and Adaptive Linear Time-Frequency Representations: A Synthesis Point of View , 2013, IEEE Signal Processing Magazine.
[38] Thomas Grill,et al. A Framework for Invertible, Real-Time Constant-Q Transforms , 2012, IEEE Transactions on Audio, Speech, and Language Processing.
[39] G. Goertzel. An Algorithm for the Evaluation of Finite Trigonometric Series , 1958 .
[40] Helmut Bölcskei,et al. Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..
[41] Nicki Holighaus,et al. Efficient Algorithms for Discrete Gabor Transforms on a Nonseparable Lattice , 2013, IEEE Transactions on Signal Processing.
[42] Ivan W. Selesnick,et al. The double-density dual-tree DWT , 2004, IEEE Transactions on Signal Processing.