Decoding transcriptional states in cancer.

Gene regulatory networks determine cellular identity. In cancer, aberrations of gene networks are caused by driver mutations that often affect transcription factors and chromatin modifiers. Nevertheless, gene transcription in cancer follows the same cis-regulatory rules as normal cells, and cancer cells have served as convenient model systems to study transcriptional regulation. Tumours often show regulatory heterogeneity, with subpopulations of cells in different transcriptional states, which has important therapeutic implications. Here, we review recent experimental and computational techniques to reverse engineer cancer gene networks using transcriptome and epigenome data. New algorithms, data integration strategies, and increasing amounts of single cell genomics data provide exciting opportunities to model dynamic regulatory states at unprecedented resolution.

[1]  Leighton J. Core,et al.  Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq) , 2016, Nature Protocols.

[2]  R. Elkon,et al.  Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 , 2016, Nature Biotechnology.

[3]  S. Aerts,et al.  An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model , 2016, Current Biology.

[4]  Graziano Pesole,et al.  Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes , 2009, Nucleic Acids Res..

[5]  Stein Aerts,et al.  Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models , 2015, PLoS Comput. Biol..

[6]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[7]  K. Hoek,et al.  Cancer stem cells versus phenotype‐switching in melanoma , 2010, Pigment cell & melanoma research.

[8]  Stuart Kauffman,et al.  How to escape the cancer attractor: rationale and limitations of multi-target drugs. , 2013, Seminars in cancer biology.

[9]  Jie Wang,et al.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation , 2013, BCB.

[10]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[11]  R. DePinho,et al.  Pancreatic cancer biology and genetics , 2002, Nature Reviews Cancer.

[12]  David R. Kelley,et al.  Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks , 2015, bioRxiv.

[13]  Jun S. Liu,et al.  MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens , 2014, Genome Biology.

[14]  O. Troyanskaya,et al.  Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.

[15]  Łukasz M. Boryń,et al.  Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq , 2013, Science.

[16]  David W. Nauen,et al.  Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. , 2015, Cell stem cell.

[17]  L. Hennighausen,et al.  Hierarchy within the mammary STAT5-driven Wap super-enhancer , 2016, Nature Genetics.

[18]  S. PratherRandall,et al.  Methylated DNA Immunoprecipitation and High-Throughput Sequencing (MeDIP-seq) Using Low Amounts of Genomic DNA , 2014 .

[19]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[20]  B. Bernstein,et al.  Charting histone modifications and the functional organization of mammalian genomes , 2011, Nature Reviews Genetics.

[21]  B. Cohen,et al.  High-throughput functional testing of ENCODE segmentation predictions , 2014, Genome research.

[22]  R. Young,et al.  Transcriptional Regulation and Its Misregulation in Disease , 2013, Cell.

[23]  Cosmas D. Arnold,et al.  Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution , 2014, Nature Genetics.

[24]  G. Coetzee,et al.  Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits , 2016, Epigenetics & Chromatin.

[25]  G. Berx,et al.  Regulatory networks defining EMT during cancer initiation and progression , 2013, Nature Reviews Cancer.

[26]  Ash A. Alizadeh,et al.  Abstract PR09: The prognostic landscape of genes and infiltrating immune cells across human cancers , 2015 .

[27]  Jon C. Aster,et al.  Network analysis of gene essentiality in functional genomics experiments , 2015, Genome Biology.

[28]  Shuqiang Li,et al.  CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq , 2016, Genome Biology.

[29]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[30]  Dongwon Lee,et al.  kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets , 2013, Nucleic Acids Res..

[31]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[32]  Trupti Joshi,et al.  Inferring gene regulatory networks from multiple microarray datasets , 2006, Bioinform..

[33]  Wouter Meuleman,et al.  Chromatin Position Effects Assayed by Thousands of Reporters Integrated in Parallel , 2013, Cell.

[34]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[35]  L. Pennacchio,et al.  Genetic dissection of the α-globin super-enhancer in vivo , 2016, Nature Genetics.

[36]  N. Ahituv,et al.  Decoding enhancers using massively parallel reporter assays. , 2015, Genomics.

[37]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[38]  A. Visel,et al.  Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. , 2010, Genome research.

[39]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[40]  Richard A Young,et al.  Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. , 2012, Cancer cell.

[41]  Denis Thieffry,et al.  RSAT 2015: Regulatory Sequence Analysis Tools , 2015, Nucleic Acids Res..

[42]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[43]  Renata Walewska,et al.  Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks , 2016, Nature Communications.

[44]  R. Agami,et al.  Applying CRISPR–Cas9 tools to identify and characterize transcriptional enhancers , 2016, Nature Reviews Molecular Cell Biology.

[45]  S. Aerts,et al.  Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic , 2016, Genome research.

[46]  F. Tang,et al.  Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing , 2013, Genome research.

[47]  Alicia N. Schep,et al.  Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility , 2016, Cell.

[48]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[49]  Jing Wang,et al.  WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013 , 2013, Nucleic Acids Res..

[50]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[51]  N. Neff,et al.  Quantitative assessment of single-cell RNA-sequencing methods , 2013, Nature Methods.

[52]  Wouter de Laat,et al.  Quantitative analysis of chromosome conformation capture assays (3C-qPCR) , 2007, Nature Protocols.

[53]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[54]  Frank Emmert-Streib,et al.  Bagging Statistical Network Inference from Large-Scale Gene Expression Data , 2012, PloS one.

[55]  R. König,et al.  A probability-based approach for the analysis of large-scale RNAi screens , 2007, Nature Methods.

[56]  Pao-Yang Chen,et al.  Profiling genome-wide DNA methylation , 2016, Epigenetics & Chromatin.

[57]  Martin S. Taylor,et al.  The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line , 2009, Nature Genetics.

[58]  T. Mikkelsen,et al.  Genome-scale DNA methylation maps of pluripotent and differentiated cells , 2008, Nature.

[59]  X. Bian,et al.  Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types , 2015, Scientific Reports.

[60]  Berthold Göttgens,et al.  Function-based Identification of Mammalian Enhancers Using Site-Specific Integration , 2014, Nature Methods.

[61]  Richard Bonneau,et al.  FIREWACh: High-throughput Functional Detection of Transcriptional Regulatory Modules in Mammalian Cells , 2014, Nature Methods.

[62]  J. Sklar,et al.  Genome-wide Detection of DNase I Hypersensitive Sites in Single Cells and FFPE Samples , 2015, Nature.

[63]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[64]  Jun S. Wei,et al.  The Genomic Landscape of the Ewing Sarcoma Family of Tumors Reveals Recurrent STAG2 Mutation , 2014, PLoS genetics.

[65]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[66]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[67]  A. Weeraratna,et al.  Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. , 2013, Cancer discovery.

[68]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[69]  Sergio Contrino,et al.  InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data , 2012, Bioinform..

[70]  J. Landsberg,et al.  Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation , 2012, Nature.

[71]  Aedín C. Culhane,et al.  GeneSigDB—a curated database of gene expression signatures , 2009, Nucleic Acids Res..

[72]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[73]  Michael A. White Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. , 2015, Genomics.

[74]  D. Weitz,et al.  Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state , 2015, Nature Biotechnology.

[75]  Benjamin J. Strober,et al.  A method to predict the impact of regulatory variants from DNA sequence , 2015, Nature Genetics.

[76]  G. Crawford,et al.  DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. , 2010, Cold Spring Harbor protocols.

[77]  M. Middleton,et al.  Directed phenotype switching as an effective antimelanoma strategy. , 2013, Cancer cell.

[78]  S. Aerts,et al.  Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state , 2015, Nature Communications.

[79]  Webster K. Cavenee,et al.  EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. , 2015, Molecular cell.

[80]  Stein Aerts,et al.  i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly , 2015, Nucleic Acids Res..

[81]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[82]  Stephan Beck,et al.  Methylome analysis using MeDIP-seq with low DNA concentrations , 2012, Nature Protocols.

[83]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[84]  J. Taipale,et al.  The role of enhancers in cancer , 2016, Nature Reviews Cancer.

[85]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[86]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[87]  T. Barrette,et al.  Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. , 2007, Neoplasia.

[88]  Lisa Helbling Chadwick,et al.  The NIH Roadmap Epigenomics Program data resource. , 2012, Epigenomics.

[89]  Reuven Agami,et al.  A large-scale RNAi screen in human cells identifies new components of the p53 pathway , 2004, Nature.

[90]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[91]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[92]  Zhi-Ping Liu,et al.  Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data , 2015, Current genomics.

[93]  David J. Arenillas,et al.  oPOSSUM-3: Advanced Analysis of Regulatory Motif Over-Representation Across Genes or ChIP-Seq Datasets , 2012, G3: Genes | Genomes | Genetics.

[94]  N. Hacohen,et al.  Highly parallel identification of essential genes in cancer cells , 2008, Proceedings of the National Academy of Sciences.

[95]  Bandana Sharma,et al.  CDK7 Inhibition Suppresses Super-Enhancer-Linked Oncogenic Transcription in MYCN-Driven Cancer , 2014, Cell.

[96]  Stein Aerts,et al.  iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections , 2014, PLoS Comput. Biol..

[97]  E. Aurell,et al.  Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape , 2016, Proceedings of the National Academy of Sciences.

[98]  B. Cohen,et al.  A genome-integrated massively parallel reporter assay reveals DNA sequence determinants of cis-regulatory activity in neural cells , 2016, Nucleic acids research.

[99]  J. Gagneur,et al.  TT-seq maps the human transient transcriptome , 2016, Science.

[100]  J. Dekker,et al.  Mapping networks of physical interactions between genomic elements using 5C technology , 2007, Nature Protocols.

[101]  S. Kauffman,et al.  Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. , 2009, Seminars in cell & developmental biology.

[102]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[103]  Jay Shendure,et al.  High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis , 2009, Nature Biotechnology.

[104]  K. Gunderson,et al.  High density DNA methylation array with single CpG site resolution. , 2011, Genomics.

[105]  Rhonda Bacher,et al.  Design and computational analysis of single-cell RNA-sequencing experiments , 2016, Genome Biology.

[106]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[107]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[108]  Robert J. Schmitz,et al.  MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing , 2015, Nature Protocols.

[109]  David Haussler,et al.  ENCODE Data in the UCSC Genome Browser: year 5 update , 2012, Nucleic Acids Res..

[110]  Andrea Califano,et al.  Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL , 2011, Nature Medicine.

[111]  Nathan C. Sheffield,et al.  ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors , 2015, Nature Methods.

[112]  A. Børresen-Dale,et al.  The Genomic Landscape of Pancreatic and Periampullary Adenocarcinoma. , 2016, Cancer research.

[113]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[114]  R. Bernards,et al.  Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma , 2014, Nature.

[115]  David A. Orlando,et al.  Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers , 2013, Cell.

[116]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[117]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[118]  Joseph L. Herman,et al.  Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis , 2015, Nature Methods.

[119]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[120]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[121]  Wei Keat Lim,et al.  The transcriptional network for mesenchymal transformation of brain tumors , 2009, Nature.

[122]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.