Zabala Comparison of multi-temporal and multispectral Sentinel-2 and Unmanned Aerial Vehicle imagery for crop type mapping

[1]  Claire Marais-Sicre,et al.  Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series , 2016, Remote. Sens..

[2]  Adrien Michez,et al.  Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[3]  Gang Chen,et al.  Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms , 2015, Remote. Sens..

[4]  F. López-Granados,et al.  Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV , 2014 .

[5]  Rasmus Fensholt,et al.  An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes , 2016, Remote. Sens..

[6]  M. A. Moreno,et al.  Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing , 2014, Precision Agriculture.

[7]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[8]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[9]  Michele Meroni,et al.  Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[10]  Changshan Wu,et al.  The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques , 2013 .

[11]  J. Reid Experimental Design and Data Analysis for Biologists , 2003 .

[12]  K. Cook An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection , 2017 .

[13]  Alfred Stein,et al.  The core of GIScience : a process-based approach , 2012 .

[14]  Jose Ignacio,et al.  Multi-objective optimisation algorithms for GIS-based multi-criteria decision analysis : an application for evacuation planning , 2016 .

[15]  Ufuk Türker,et al.  The Role of Precision Agriculture in the Promotion of Food Security , 2015 .

[16]  José Manuel Peñá-Barragán,et al.  Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management , 2015, Remote. Sens..

[17]  Jean-Michel Poggi,et al.  VSURF: An R Package for Variable Selection Using Random Forests , 2015, R J..

[18]  A. L. Choodarathnakara,et al.  Mixed Pixels : A Challenge in Remote Sensing Data Classification for Improving Performance , 2012 .

[19]  R. Pu,et al.  MAPPING ROBINIA PSEUDOACACIA FOREST HEALTH CONDITIONS BY USING COMBINED SPECTRAL, SPATIAL AND TEXTUREAL INFORMATION EXTRACTED FROM IKONOS IMAGERY , 2016 .

[20]  H. Piégay,et al.  Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system , 2016, Environmental Monitoring and Assessment.

[21]  E. L. Blanco Assessing the Potential of Embedding Vegetation Dynamics into a Fire Behaviour Model: LPJ-GUESS-FARSITE , 2014 .

[22]  F. López-Granados,et al.  Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management , 2013, PloS one.

[23]  Matthew C. Hansen,et al.  National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey , 2017 .

[24]  S. Shankar Sastry,et al.  Estimation of Multiple Motions from Two Views , 2004 .

[25]  Christopher Conrad,et al.  Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines , 2013 .

[26]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[27]  C. Gomez,et al.  Joint use of Sentinel-1 and Sentinel-2 for land cover classification : a machine learning approach , 2017 .

[28]  R A Diaz-Varela,et al.  Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle. , 2014, Journal of environmental management.

[29]  Markku Kuitunen,et al.  What makes segmentation good? A case study in boreal forest habitat mapping , 2013 .

[30]  Mark A. Friedl,et al.  A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data , 2018, Remote. Sens..

[31]  F. A. Vega,et al.  Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop , 2015 .

[32]  Per Jönsson,et al.  TIMESAT - a program for analyzing time-series of satellite sensor data , 2004, Comput. Geosci..

[33]  Gérard Dedieu,et al.  Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery , 2015, Remote. Sens..

[34]  M. Bindi,et al.  A simple model of regional wheat yield based on NDVI data , 2007 .

[35]  M. Mkhabela,et al.  Early maize yield forecasting in the four agro-ecological regions of Swaziland using NDVI data derived from NOAA's-AVHRR , 2005 .

[36]  Daniela Stroppiana,et al.  Rice yield estimation using multispectral data from UAV: A preliminary experiment in northern Italy , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[37]  Pierre-Majorique Léger,et al.  The early explanatory power of NDVI in crop yield modelling , 2008 .

[38]  Peijuan Wang,et al.  Fusing Landsat and MODIS Data for Vegetation Monitoring , 2015, IEEE Geoscience and Remote Sensing Magazine.

[39]  Stephania Zabala Ramos,et al.  Comparison of multi-temporal and multispectral Sentinel-2 and Unmanned Aerial Vehicle imagery for crop type mapping , 2017 .

[40]  Climate change impact on water and temperature conditions of forest soils : a case study related to the Swedish forestry sector , 2014 .

[41]  O. Löfgren Using Worldview-2 satellite imagery to detect indicators of high species diversity in grasslands , 2013 .

[42]  Andrew D Richardson,et al.  Near-surface remote sensing of spatial and temporal variation in canopy phenology. , 2009, Ecological applications : a publication of the Ecological Society of America.

[43]  L. Eklundh,et al.  A physically based vegetation index for improved monitoring of plant phenology , 2014 .

[44]  Ahmad Al Bitar,et al.  Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data , 2016 .

[45]  Douglas K. Bolton,et al.  Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics , 2013 .

[46]  Te-Ming Tu,et al.  A new look at IHS-like image fusion methods , 2001, Inf. Fusion.

[47]  R. Ballesteros,et al.  Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part II: application to maize and onion crops of a semi-arid region in Spain , 2014, Precision Agriculture.

[48]  Herman Eerens,et al.  Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[49]  Karen Anderson,et al.  Lightweight unmanned aerial vehicles will revolutionize spatial ecology , 2013 .

[51]  Xinyi Dai Dam site selection using an integrated method of AHP and GIS for decision making support in Bortala, Northwest China , 2016 .

[52]  Simon Bennertz,et al.  Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging , 2014, Remote. Sens..

[53]  Matthias Rothmund,et al.  Precision agriculture on grassland : Applications, perspectives and constraints , 2008 .

[54]  Clement Atzberger,et al.  First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe , 2016, Remote. Sens..

[55]  G. Sharma Land Surface Phenology as an indicator of performance of conservation policies like Natura2000 , 2016 .

[56]  J. Flexas,et al.  UAVs challenge to assess water stress for sustainable agriculture , 2015 .

[57]  Ryan J. Frazier,et al.  Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics , 2014 .

[58]  Edward H. Teets,et al.  Atmospheric considerations for uninhabited aerial vehicle (UAV) flight test planning , 1998 .

[59]  Olena Dubovyk,et al.  Using RapidEye and MODIS Data Fusion to Monitor Vegetation Dynamics in Semi-Arid Rangelands in South Africa , 2015, Remote. Sens..

[60]  Catur Aries Rokhmana,et al.  The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia☆ , 2015 .