Truncated T-splines: Fundamentals and methods

In this paper, we present Truncated T-splines as a new type of T-splines suitable for both geometric design and analysis, supporting highly localized refinement. Truncated T-spline basis functions are piece-wise polynomials that are linearly independent and form a partition of unity. Refinement of truncated T-splines produces nested spline spaces. Furthermore, we study truncated T-splines and local refinement on the general domain (2-manifold) with extraordinary points in the T-mesh. G1G1 continuity is attained around extraordinary points by properly capping quartic Bezier patches, where a constrained optimization problem is solved. In the end, we study benchmark problems using truncated T-splines in the context of isogeometric analysis. We also apply truncated T-splines to complex geometries to show the smooth surfaces and simulation results under local refinement.

[1]  Lei Liu,et al.  Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .

[2]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[3]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[4]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[5]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[6]  Thomas J. R. Hughes,et al.  Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .

[7]  Jiansong Deng,et al.  Modified T-splines , 2013, Comput. Aided Geom. Des..

[8]  Tom Lyche,et al.  Knot line refinement algorithms for tensor product B-spline surfaces , 1985, Comput. Aided Geom. Des..

[9]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[10]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[11]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[12]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[13]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[14]  Xiaodong Wei,et al.  Handling Extraordinary Nodes with Weighted T-spline Basis Functions , 2015 .

[15]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[16]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[17]  P. Gould Introduction to Linear Elasticity , 1983 .

[18]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[19]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[20]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[21]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[22]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[23]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[24]  Jörg Peters,et al.  Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..

[25]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[26]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .

[27]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[28]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.