Truncated T-splines: Fundamentals and methods
暂无分享,去创建一个
Thomas J. R. Hughes | Yongjie Zhang | Xiaodong Wei | Lei Liu | T. Hughes | Y. Zhang | Xiaodong Wei | Lei Liu
[1] Lei Liu,et al. Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .
[2] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[3] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[4] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[5] John A. Evans,et al. Isogeometric boundary element analysis using unstructured T-splines , 2013 .
[6] Thomas J. R. Hughes,et al. Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .
[7] Jiansong Deng,et al. Modified T-splines , 2013, Comput. Aided Geom. Des..
[8] Tom Lyche,et al. Knot line refinement algorithms for tensor product B-spline surfaces , 1985, Comput. Aided Geom. Des..
[9] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[10] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[11] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[12] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[13] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[14] Xiaodong Wei,et al. Handling Extraordinary Nodes with Weighted T-spline Basis Functions , 2015 .
[15] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[16] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[17] P. Gould. Introduction to Linear Elasticity , 1983 .
[18] F. Cirak,et al. A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .
[19] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[20] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[21] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[22] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[23] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[24] Jörg Peters,et al. Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..
[25] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[26] T. Hughes,et al. Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .
[27] Thomas J. R. Hughes,et al. Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .
[28] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.