1,2-Di(phenylethynyl)ethenes with axially chiral, 2,2'-bridged 1,1'-binaphthyl substituents: potent cholesteric liquid-crystal inducers.

Axially chiral, 3,5-dihydro-4H-dinaphtho[2,1-c:1',2'-e]azepine (dinaphthazepine) and 1,1'-binaphthyl-2,2'-disulfonimide (dinaphthosulfonimide) moieties were rigidly connected via N-p-phenylene linkers to photochemically (E)/(Z)-isomerisable 1,2-diethynylethene scaffolds. The chemical stability of the resulting systems was found to be critically related to the other substituents on the central π-conjugated scaffold. High helical twisting power (HTP), up to 315 μm(-1), for the induction of a cholesteric liquid-crystalline phase through doping of a nematic phase was measured, resulting from the introduction of the chiral, mesogenic 1,1'-binaphthyl motifs. Single crystal X-ray analysis revealed that the phenylene spacer is in π-conjugation with the N-atom of the dinaphthazepine but not with the N-atom of the dinaphthosulfonimide moiety. This difference in orientation results in visible-transparency in the electronic absorption spectrum and higher (E)/(Z)-photoisomerisation quantum yields of the dinaphthosulfonimide-derived chiral dopants, as compared to the dinaphthazepine systems, which feature intramolecular charge-transfer absorption in the visible region.

[1]  T. White,et al.  Light-induced liquid crystallinity , 2012, Nature.

[2]  Augustine Urbas,et al.  Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches. , 2012, Journal of the American Chemical Society.

[3]  R. Eelkema Photo-responsive doped cholesteric liquid crystals , 2011 .

[4]  A. Ferrarini,et al.  Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. , 2011, Chemical Society reviews.

[5]  Timothy J. Bunning,et al.  Dynamic color in stimuli-responsive cholesteric liquid crystals , 2010 .

[6]  M. Schäfer,et al.  Synthesis and Structural Characterization of a New Class of Strong Chiral Brønsted Acids: 1,1′‐Binaphthyl‐2,2′‐bis(sulfuryl)imides (JINGLEs) , 2010 .

[7]  T. White,et al.  Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning. , 2010, Chemical communications.

[8]  K. Ishihara,et al.  Synthesis of chiral 3,3′-disubstituted 1,1′-binaphthyl-2,2′-disulfonic acids , 2010 .

[9]  Li-xia Xiong,et al.  Design, Synthesis and Biological Activities of Novel Amides (Sulfonamides) Containing N‐Pyridylpyrazole , 2009 .

[10]  F. Diederich,et al.  N-arylated 3,5-dihydro-4H-dinaphtho[2,1-c:1',2'-e]azepines: axially chiral donors with high helical twisting powers for nonplanar push-pull chromophores. , 2009, Chemistry.

[11]  J. Neudörfl,et al.  BINBAM – A New Motif for Strong and Chiral Brønsted Acids , 2009 .

[12]  B. List,et al.  A powerful chiral counteranion motif for asymmetric catalysis. , 2009, Angewandte Chemie.

[13]  K. Ishihara,et al.  Chiral lanthanum(III)-binaphthyldisulfonate complexes for catalytic enantioselective Strecker reaction. , 2009, Organic letters.

[14]  Masuki Kawamoto,et al.  Thermo and Photoresponsive Behavior of Liquid-Crystalline Helical Structures with the Aid of Dual Molecular Motions , 2009 .

[15]  E. Sudhölter,et al.  Synthesis and optical properties of all-trans-oligodiacetylenes. , 2008, Chemistry.

[16]  M. Goh,et al.  Powerful helicity inducers: axially chiral binaphthyl derivatives , 2008 .

[17]  I. A. Maretina Design strategy of enediynes and enyne-allenes , 2008 .

[18]  Y. Nishimura,et al.  Photochemical and Photophysical Characteristics in the Excited State Properties of Methoxy-substituted Enediynes , 2008 .

[19]  B. Kuhn,et al.  Small Molecule Conformational Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis , 2008, J. Chem. Inf. Model..

[20]  Taizo Mori,et al.  Helicity-Controlled Liquid Crystal Reaction Field Using Nonbridged and Bridged Binaphthyl Derivatives Available for Synthesis of Helical Conjugated Polymers , 2008 .

[21]  Soon Moon Jeong,et al.  Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. , 2008, Nature materials.

[22]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[23]  Keiko Kobayashi,et al.  Two origins for twisting power of a binaphthyl derivative in a host nematic liquid crystal , 2007 .

[24]  J. W. Doane,et al.  Reversible photoswitchable axially chiral dopants with high helical twisting power. , 2007, Journal of the American Chemical Society.

[25]  F. Diederich,et al.  Nonphosphate Inhibitors of IspE Protein, a Kinase in the Non‐Mevalonate Pathway for Isoprenoid Biosynthesis and a Potential Target for Antimalarial Therapy , 2007, ChemMedChem.

[26]  Masuki Kawamoto,et al.  Light-driven twisting behaviour of chiral cyclic compounds. , 2007, Chemical communications.

[27]  Keiko Kobayashi,et al.  Host-guest effect on chirality transfer from a binaphthyl derivative to a host nematic liquid crystal. , 2007, Chemical communications.

[28]  Ben L Feringa,et al.  Amplification of chirality in liquid crystals. , 2006, Organic & biomolecular chemistry.

[29]  B. Feringa,et al.  Reversible full-range color control of a cholesteric liquid-crystalline film by using a molecular motor. , 2006, Chemistry, an Asian journal.

[30]  H. Nishihara,et al.  Visible-light photochromism of bis(ferrocenylethynyl)ethenes switches electronic communication between ferrocene sites. , 2006, Angewandte Chemie.

[31]  Alberto Credi,et al.  Artificial Molecular Motors Powered by Light , 2006 .

[32]  Heinz Oberhammer,et al.  Molecular structure and conformations of benzenesulfonamide: gas electron diffraction and quantum chemical calculations. , 2006, The Journal of organic chemistry.

[33]  K. Fuji,et al.  Homochiral helices of oligonaphthalenes inducing opposite-handed cholesteric phases. , 2006, Chemistry.

[34]  T. Nonaka,et al.  Reversible‐Photon‐Mode Full‐Color Display by Means of Photochemical Modulation of a Helically Cholesteric Structure , 2005 .

[35]  G. Gottarelli,et al.  The control of the cholesteric pitch by some azo photochemical chiral switches. , 2004, Chemistry.

[36]  S. Ley,et al.  Polymer-assisted, multi-step solution phase synthesis and biological screening of histone deacetylase inhibitors. , 2004, Organic & biomolecular chemistry.

[37]  Tomiki Ikeda,et al.  Photomodulation of liquid crystal orientations for photonic applications , 2003 .

[38]  Yoichi Takanishi,et al.  How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing , 2003 .

[39]  G. Gottarelli,et al.  A new axially-chiral photochemical switch. , 2003, Chemical communications.

[40]  S. V. Kovalenko,et al.  C1-c5 photochemical cyclization of enediynes. , 2002, Journal of the American Chemical Society.

[41]  A. Hirsch,et al.  An Iterative Approach tocis-Oligodiacetylenes , 2001 .

[42]  T. Majima,et al.  Novel Finding of the Effect of Triple Bond on the Photochemical cis–trans Isomerization of C=C Double Bond , 2001 .

[43]  Nobuyuki Tamaoki,et al.  Cholesteric Liquid Crystals for Color Information Technology , 2001 .

[44]  P Palffy-Muhoray,et al.  Ultraviolet lasing in cholesteric liquid crystals. , 2001, Optics letters.

[45]  F. Diederich,et al.  Photoswitchable Tetraethynylethene‐Dihydroazulene Chromophores , 2001 .

[46]  F. Diederich,et al.  Molecular Switching: A Fully Reversible, Optically Active Photochemical Switch Based on a Tetraethynylethene‐1,1′‐Binaphthalene Hybrid System , 2000 .

[47]  M. Hirama,et al.  Photochemical Cycloaromatization of Non-Benzenoid Enediynes. , 1999, Angewandte Chemie.

[48]  Paul Seiler,et al.  A Novel Three-Way Chromophoric Molecular Switch: pH and Light Controllable Switching Cycles. , 1999, Angewandte Chemie.

[49]  V. Kopp,et al.  Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. , 1998, Optics letters.

[50]  N. Turro,et al.  Photochemical Rearrangement of Enediynes: Is a "Photo-Bergman" Cyclization a Possibility? , 1998 .

[51]  Rainer E. Martin,et al.  Photochemical trans–cis isomerisation of donor/acceptor-substituted (E)-hex-3-ene-1,5-diynes (1,2-diethynylethenes, DEEs) and 3,4-diethynylhex-3-ene-1,5-diynes (tetraethynylethenes, TEEs) , 1998 .

[52]  Peter Günter,et al.  Poly(triacetylene) Oligomers: Synthesis, Characterization, and Estimation of the Effective Conjugation Length by Electrochemical, UV/Vis, and Nonlinear Optical Methods , 1997 .

[53]  F. Diederich,et al.  Donor/Acceptor‐Substituted Tetraethynylethenes: Systematic Assembly of Molecules for Use as Advanced Materials , 1996 .

[54]  F. Diederich,et al.  Tetraethynylethenes: Fully cross-conjugated π-electron chromophores and molecular scaffolds for all-carbon networks and carbon-rich nanomaterials , 1995 .

[55]  N. L. Allinger,et al.  Ab Initio and Molecular Mechanics Calculations on the Inversion of Cs to C2 Conformations of 1,3-Cycloheptadiene , 1994 .

[56]  H. Flack,et al.  On enantiomorph‐polarity estimation , 1983 .

[57]  B. Samorì,et al.  Induction of cholesteric mesophases in nematic liquid crystals by some chiral aryl alkyl carbinols , 1981 .

[58]  E. P. Raynes,et al.  Voltage Dependence of the Capacitance of a Twisted Nematic Liquid Crystal Layer , 1979 .

[59]  G. Heppke,et al.  Notizen: Bestimmung des Helixdrehsinnes cholesterischer Phasen mit der Grandjean-Cano-Methode / Determination of the Helical Sense of Cholesteric Liquid Crystals Using the Grandjean-Cano Method , 1977 .

[60]  N. L. Allinger,et al.  On the molecular structure of cycloheptadiene , 1973 .