Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil
暂无分享,去创建一个
P. M. Dourado | S. Martinelli | G. Head | D. Bernardi | R. A. Carvalho | C. Omoto | O. Bernardi | R. J. Horikoshi | E. Salmeron
[1] P. Queiroz,et al. Evidence of Field-Evolved Resistance of Spodoptera frugiperda to Bt Corn Expressing Cry1F in Brazil That Is Still Sensitive to Modified Bt Toxins , 2015, PloS one.
[2] C. Omoto,et al. Geographical and Temporal Variability in Susceptibility to Cry1F Toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) Populations in Brazil , 2014, Journal of economic entomology.
[3] D. Andow,et al. Cry1F Resistance in Fall Armyworm Spodoptera frugiperda: Single Gene versus Pyramided Bt Maize , 2014, PloS one.
[4] Matin Qaim,et al. A Meta-Analysis of the Impacts of Genetically Modified Crops , 2014, PloS one.
[5] Rodrigo J. Sorgatto,et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil , 2014 .
[6] F. Huang,et al. Larval survival and plant injury of Cry1F-susceptible, -resistant, and -heterozygous fall armyworm (Lepidoptera: Noctuidae) on non-Bt and Bt corn containing single or pyramided genes , 2014 .
[7] Rodrigo J. Sorgatto,et al. Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein , 2014 .
[8] S. Naranjo,et al. Plant Biotechnology: Experience and Future Prospects , 2014 .
[9] J. Jurat-Fuentes,et al. Fitness Costs Associated with Field-Evolved Resistance to Bt Maize in Spodoptera frugiperda (Lepidoptera: Noctuidae) , 2014, Journal of economic entomology.
[10] S. Naranjo. Effects of GM Crops on Non-target Organisms , 2014 .
[11] X. Pons,et al. No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa , 2014, Transgenic Research.
[12] Patrícia Dourado,et al. Manejo de lepidópteros-praga na cultura do milho com o evento Bt piramidado Cry1A.105 e Cry2Ab2 , 2013 .
[13] R. Meagher,et al. Susceptibility of Field Populations of the Fall Armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to Purified Cry1f Protein and Corn Leaf Tissue Containing Single and Pyramided Bt Genes , 2013 .
[14] G. Head,et al. Susceptibility of Louisiana and Florida Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Pyramided Bt Corn Containing Genuity®Vt Double Pro™ and Smartstax™ Traits , 2013 .
[15] A. M. Vélez,et al. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) , 2013, Bulletin of Entomological Research.
[16] C. S. Hernández-Rodríguez,et al. Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda , 2013, PloS one.
[17] B. Tabashnik,et al. Insect resistance to Bt crops: lessons from the first billion acres , 2013, Nature Biotechnology.
[18] M. Williamson,et al. Investigating the Molecular Mechanisms of Organophosphate and Pyrethroid Resistance in the Fall Armyworm Spodoptera frugiperda , 2013, PloS one.
[19] Thiago,et al. Agronomic efficiency of Bacillus thuringiensis (Bt) maize hybrids in pests control on Lucas do Rio Verde city, State of Mato Grosso, Brazil , 2013 .
[20] Matin Qaim,et al. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India , 2012, Proceedings of the National Academy of Sciences.
[21] G. Head,et al. Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. , 2012, GM crops & food.
[22] N. Desneux,et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services , 2012, Nature.
[23] G. B. Martha,et al. The development of Brazilian agriculture: future technological challenges and opportunities , 2012, Agriculture & Food Security.
[24] J. E. Foster,et al. Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith] [Lepidoptera: Noctuidae]) larvae in maize , 2012 .
[25] G. Gujar,et al. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. , 2011, Pest management science.
[26] Jennifer L. Petzold-Maxwell,et al. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm , 2011, PloS one.
[27] R. Hollingsworth. INSECT PEST MANAGEMENT OF TROPICAL VERSUS TEMPERATE CROPS; PATTERNS OF SIMILARITIES AND DIFFERENCES IN APPROACH , 2011 .
[28] Rosalind J Wright,et al. Areawide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers , 2010, Science.
[29] G. Thompson,et al. Discovery and Characterization of Field Resistance to Bt Maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico , 2010, Journal of economic entomology.
[30] J. Carpenter,et al. Peer-reviewed surveys indicate positive impact of commercialized GM crops , 2010, Nature Biotechnology.
[31] S. M. Mendes,et al. Avaliação da incidência de organismos alvo e não alvo em milho Bt (Cry 1Ab) em condições de campo em Sete Lagoas-MG. , 2009 .
[32] Graham Brookes,et al. GM crops: global socio-economic and environmental impacts 1996- 2007 , 2008 .
[33] J. Parra,et al. DADOS BIOLÓGICOS COMPARATIVOS DE Spodoptera frugiperda (L. E. Smith, 1797) (LEPIDOPTERA, NOCTUIDAE) EM ALGODOEIRO E MILHO , 2007 .
[34] J. B.J. van Rensburg,et al. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize , 2007 .
[35] N. L. Innes. Global Status of Commercialized Biotech/GM Crops: 2005. ISAAA Briefs No. 34. By C. James. Ithaca, NY, USA: ISAAA (2005), pp. 46, US$50.00. ISBN 1-892456-38-9 , 2006, Experimental Agriculture.
[36] T. Lewinsohn,et al. How Many Species Are There in Brazil? , 2005 .
[37] Celso Omoto,et al. Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a lambda-cialotrina , 2001 .
[38] M. Raymond,et al. Insecticide Resistance and Dominance Levels , 2000, Journal of economic entomology.
[39] A. J. Luiz,et al. Statistical Inference on Associated Fertility Life Parameters Using Jackknife Technique: Computational Aspects , 2000, Journal of economic entomology.
[40] David A. Andow,et al. F2 screen for rare resistance alleles , 1998 .
[41] F. Gould. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. , 1998, Annual review of entomology.
[42] M. Whalon,et al. Managing Insect Resistance to Bacillus thuringiensis Toxins , 1992, Science.
[43] H. Preisler,et al. Pesticide Bioassays With Arthropods , 1991 .
[44] Roger N. Williams. Agricultural Insect Pests of the Tropics and Their Control , 1976 .
[45] D. S. Hill,et al. Agricultural Insect Pests of the Tropics and Their Control. , 1975 .