Local Contrast Segmentation to Binarize Images

In this paper, a new binarization algorithm for degraded document images is proposed. The method is based on positive and negative pixel energies using the Laplacian ofan image. After a filtering step and morphological perationsour local contrast segmentation method is able to detectingconnected components. The given approach is applied to casesof sophisticated, challenging documents and other application scenarios like whiteboard and chalk images.

[1]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[2]  Anil K. Jain,et al.  Goal-Directed Evaluation of Binarization Methods , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Marcus Liwicki,et al.  Handwriting Recognition of Whiteboard Notes - Studying the Influence of Training Set Size and Type , 2007, Int. J. Pattern Recognit. Artif. Intell..

[4]  Gernot A. Fink,et al.  Toward automatic video-based whiteboard reading , 2004, International Journal of Document Analysis and Recognition (IJDAR).

[5]  Ching Y. Suen,et al.  A threshlod selection method based on multiscale and graylevel co-occurrence matrix analysis , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[6]  Raúl Rojas,et al.  Quantile Linear Algorithm for Robust Binarization of Digitalized Letters , 2007, Ninth International Conference on Document Analysis and Recognition (ICDAR 2007).

[7]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[8]  Ioannis Pratikakis,et al.  Adaptive degraded document image binarization , 2006, Pattern Recognit..

[9]  Gernot A. Fink,et al.  Toward automatic video-based whiteboard reading , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[10]  Nikos Papamarkos,et al.  A technique for fuzzy document binarization , 2001, DocEng '01.

[11]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[12]  CipollaRoberto,et al.  Multiscale Categorical Object Recognition Using Contour Fragments , 2008 .

[13]  Ahmed S. Abutaleb,et al.  Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989, Comput. Vis. Graph. Image Process..

[14]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .

[15]  Andrew Blake,et al.  Multiscale Categorical Object Recognition Using Contour Fragments , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Ergina Kavallieratou A binarization algorithm specialized on document images and photos , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[17]  Klaus D. Tönnies Grundlagen der Bildverarbeitung , 2005 .

[18]  Rae-Hong Park,et al.  Document image binarization based on topographic analysis using a water flow model , 2002, Pattern Recognit..

[19]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[20]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[21]  Dario Maio,et al.  Direct Gray-Scale Minutiae Detection In Fingerprints , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Matti Pietikäinen,et al.  Adaptive document image binarization , 2000, Pattern Recognit..

[23]  Y. Chen,et al.  A Novel Binarization System for Degraded Document Images , 2007, Ninth International Conference on Document Analysis and Recognition (ICDAR 2007).

[24]  B. Kapralos,et al.  I An Introduction to Digital Image Processing , 2022 .

[25]  Majid Mirmehdi,et al.  Text selection by structured light marking for hand-held cameras , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[26]  Xuefeng Liang Fingerprint image analysis using computational geometric techniques , 2006 .

[27]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..