High energy storage properties of Nd(Mg2/3Nb1/3)O3 modified Bi0.5Na0.5TiO3 lead-free ceramics

[1]  Y. Liu,et al.  Energy storage performance of SrSc 0.5 Nb 0.5 O 3 modified (Bi,Na)TiO 3 ‐based ceramic under low electric fields , 2022, Journal of the American Ceramic Society.

[2]  Bing Xie,et al.  Bi0.5Na0.5TiO3-based relaxor-ferroelectric ceramics for low-electric-field dielectric energy storage via bidirectional optimization strategy , 2022, Chemical Engineering Journal.

[3]  Shengbin Wang,et al.  High energy storage properties for BiMg0.5Ti0.5O3-modified KNN ceramics under low electric fields , 2022, Journal of Materials Science.

[4]  Xihong Hao,et al.  Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering , 2021, Energy Storage Materials.

[5]  Ming Wu,et al.  Grain size modulated (Na0.5Bi0.5)0.65Sr0.35TiO3-based ceramics with enhanced energy storage properties , 2021, Chemical Engineering Journal.

[6]  J. Zhai,et al.  Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering , 2021, Composites Part B: Engineering.

[7]  Z. Xi,et al.  Improved energy storage density and efficiency of (1−x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2/3Nb1/3O3 lead-free ceramics , 2021, Chemical Engineering Journal.

[8]  Jiyang Xie,et al.  A novel relaxor (Bi,Na,Ba)(Ti,Zr)O 3 lead‐free ceramic with high energy storage performance , 2021 .

[9]  Yan Yan,et al.  Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process , 2020 .

[10]  Xiao-ming Chen,et al.  Dielectric and ferroelectric properties of (Bi0.5Na0.5)0.94-δBa0.06Ti1−xNbxO3 lead-free ceramics , 2020, Journal of Materials Science: Materials in Electronics.

[11]  X. Ren,et al.  Enhanced energy storage properties and stability of Sr(Sc0.5Nb0.5)O3 modified 0.65BaTiO3-0.35Bi0.5Na0.5TiO3 ceramics , 2020 .

[12]  Jia Liu,et al.  Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic , 2020, Ceramics International.

[13]  H. Fan,et al.  Enhanced storage energy density and fatigue free properties for 0.94Bi0.50(Na0.78K0.22)0.50Ti1-(Al0.50Nb0.50) O3-0.06BaZrO3 ceramics , 2020 .

[14]  X. Ren,et al.  An Effective Strategy to Achieve Excellent Energy Storage Properties in Lead-Free BaTiO3 Based Bulk Ceramics. , 2020, ACS applied materials & interfaces.

[15]  H. Fan,et al.  Enhanced energy-storage performance and temperature-stable dielectric properties of (1-x)[(Na0.5Bi0.5)0.95Ba0.05]0.98La0.02TiO3-xK0.5Na0.5NbO3 lead-free ceramics , 2019, Ceramics International.

[16]  Yaodong Yang,et al.  Excellent Energy Storage Properties Achieved in BaTiO3-based Lead-Free Relaxor Ferroelectric Ceramics via Domain Engineering on the Nanoscale. , 2019, ACS applied materials & interfaces.

[17]  Xiaoyu Liu,et al.  Bi(Mg2/3Nb1/3)O3 addition inducing high recoverable energy storage density in lead-free 0.65BaTiO3-0.35Bi0.5Na0.5TiO3 bulk ceramics , 2019, Journal of Alloys and Compounds.

[18]  R. Zuo,et al.  Ultrahigh Energy‐Storage Density in NaNbO3‐Based Lead‐Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains , 2019, Advanced Functional Materials.

[19]  Pawan Kumar,et al.  Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films , 2019, Applied Physics A.

[20]  Fei Li,et al.  Perovskite lead-free dielectrics for energy storage applications , 2019, Progress in Materials Science.

[21]  H. Fan,et al.  Influence of compositional ratio K/Na on structure and piezoelectric properties in [(Na1−xKx)0.5Bi0.5]Ti0.985Ta0.015O3 ceramics , 2018, Journal of Materials Science.

[22]  Ying Chen,et al.  Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics , 2018, Applied Physics Letters.

[23]  Zhuo Xu,et al.  Symmetry changes during relaxation process and pulse discharge performance of the BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic , 2018 .

[24]  Yongfei Cui,et al.  High Energy Storage Density and Optical Transparency of Microwave Sintered Homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 Ceramics , 2018 .

[25]  Y. Pu,et al.  Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics , 2017 .

[26]  I. Arčon,et al.  Donor doping of K0.5Na0.5NbO3 ceramics with strontium and its implications to grain size, phase composition and crystal structure , 2017 .

[27]  Azah Mohamed,et al.  Review of energy storage systems for electric vehicle applications: Issues and challenges , 2017 .

[28]  Zhenxiang Cheng,et al.  The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals , 2016, Nature Communications.

[29]  X. Chao,et al.  Improved dielectric properties and grain boundary response in neodymium-doped Y2/3Cu3Ti4O12 ceramics , 2016 .

[30]  Zhuo Xu,et al.  Temperature Dependence of Energy Storage in Pb0.90La0.04Ba0.04[(Zr0.7Sn0.3)0.88Ti0.12]O3 Antiferroelectric Ceramics , 2016 .

[31]  M. Lanagan,et al.  Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage , 2016 .

[32]  Qinghua Zhang,et al.  Giant Energy Density and Improved Discharge Efficiency of Solution‐Processed Polymer Nanocomposites for Dielectric Energy Storage , 2016, Advanced materials.

[33]  S. Won,et al.  Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times. , 2015, ACS applied materials & interfaces.

[34]  Bing Xie,et al.  The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics , 2015 .

[35]  W. Hackenberger,et al.  Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications , 2015 .

[36]  H. Khemakhem,et al.  XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3−xBaTiO3 lead free ceramics , 2015 .

[37]  R. Zuo,et al.  Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg,Ti)O3–PbZrO3–PbTiO3 ferroelectric ceramics , 2013 .

[38]  S. Trolier-McKinstry,et al.  High‐Energy Density Capacitors Utilizing 0.7 BaTiO3–0.3 BiScO3 Ceramics , 2009 .

[39]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[40]  Cui-ying Ma,et al.  Structural evolution and energy storage properties of Bi(Zn0.5Zr0.5)O3 modified BaTiO3-based relaxation ferroelectric ceramics , 2023, Journal of Energy Storage.

[41]  X. Ren,et al.  A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics , 2022 .

[42]  H. Fan,et al.  [Bi0.5(Na0.4-Li K0.1)]0.96Sr0.04Ti0.975Ta0.025O3 lead-free RELAXOR ceramics with the enhanced recoverable energy density , 2020 .

[43]  T. Lamcharfi,et al.  Hydrothermal Synthesis of Oxide and Carbonate Powders of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics , 2019 .

[44]  Hao Wang,et al.  Microstructure and electrical properties of MnO-Doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics , 2007 .