Diffusion as the main process for mass transport in very low water content argillites: 2. Fluid flow and mass transport modeling

[1] On the basis of chloride concentrations of pore water in the Tournemire massif (part 1), a conceptual model for mass transport in argillites by diffusion is proposed. From this conceptual model and current knowledge of the geological history of the massif, one-dimensional numerical simulations are formulated for chloride transport in Tournemire massif over the past 53 Ma. Good agreement between experimental data and calculated values for both diffusion coefficients and concentrations of chloride confirms that diffusion is the main process for mass transport in the massif. This model is also tested using deuterium contents of pore water, applying variable concentrations to meteoric water (circulating in system boundary layers) based on the thermal dependency of its isotopic composition. These simulations reveal the likely important role of lithologic heterogeneities, such as fractures, in the horizontal distribution of tracer concentrations.

[1]  L. Frakes Climates Throughout Geologic Time , 1979 .

[2]  P. Barrett,et al.  Palaeoclimatology: Cooling a continent , 2003, Nature.

[3]  L. Townley Comment on “ A reassessment of the groundwater inverse problem ” , 1997 .

[4]  Yann Moreau Le Golvan Traçage isotopique naturel des transferts hydriques dans un milieu argileux de très faible porosité : les argilites de Tournemire (France) , 1997 .

[5]  K. Różański,et al.  Relation Between Long-Term Trends of Oxygen-18 Isotope Composition of Precipitation and Climate , 1992, Science.

[6]  J. Cherry,et al.  Origin, age and movement of pore water in argillaceous Quaternary deposits at four sites in southwestern Ontario , 1981 .

[7]  G. Fabre Les fleuves et le cycle géochimique des éléments par M. Meybeck. Thèse doctorat état sciences, E.N.S. Ulm géologie, Univ. P. et M. Curie , 1986 .

[8]  John D. Bredehoeft,et al.  Ground-water models cannot be validated , 1992 .

[9]  Delphine Patriarche Caractérisation et modélisation des transferts de traceurs naturels dans les argilites de Tournemire , 2001 .

[10]  Henry H. Hinch,et al.  The Nature of Shales and the Dynamics of Hydrocarbon Expulsion in the Gulf Coast Tertiary Section , 1980 .

[11]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[12]  J. Guiot,et al.  Climate and biomes in the West Mediterranean area during the Pliocene , 1999 .

[13]  P. Maloszewski,et al.  Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers , 1993 .

[14]  F. J. Pearson,et al.  Solute transport in formations of very low permeability: profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland , 2002 .

[15]  G. de Marsily,et al.  Comment on ‘Ground-water models cannot be validated’, by L.F. Konikow & J.D. Bredehoeft , 1992 .

[16]  Christian Sonntag,et al.  Dating very old pore waters in impermeable rocks by noble gas isotopes , 1998 .

[17]  B. Sellwood,et al.  Cooler estimates of Cretaceous temperatures , 1994, Nature.

[18]  F. J. Pearson What is the porosity of a mudrock? , 1999, Geological Society, London, Special Publications.

[19]  Emmanuel Ledoux,et al.  Diffusion as the main process for mass transport in very low water content argillites: 1. Chloride as a natural tracer for mass transport—Diffusion coefficient and concentration measurements in interstitial water , 2004 .

[20]  V. Mosbrugger,et al.  Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria) , 2002 .

[21]  C. Chaston Reply to “Comment by P. K. Shukla and L. Stenflo on ‘Kinetic effects in the acceleration of auroral electrons in small scale Alfvén waves: A FAST case study’” , 2004 .

[22]  Laurent Bruxelles Dépôts et altérites des plateaux du Larzac central : Causses de l'Hospitalet et de Campestre (Aveyron, Gard, Hérault). Evolution morphogénétique, conséquences géologiques et implications pour l'aménagement. , 2001 .

[23]  Frederic Huneau FONCTIONNEMENT HYDROGEOLOGIQUE ET ARCHIVES PALEOCLIMATIQUES D'UN AQUIFERE PROFOND MEDITERRANEEN Etude géochimique et isotopique du bassin miocène de Valréas (Sud-Est de la France) , 2000 .

[24]  S. Epstein,et al.  Variation of O18 content of waters from natural sources , 1953 .

[25]  R. Pierrehumbert The hydrologic cycle in deep-time climate problems , 2002, Nature.

[26]  C. Degueldre,et al.  Study of the pore water chemistry through an argillaceous formation: a paleohydrochemical approach , 2003 .

[27]  H. Craig,et al.  Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters , 1961, Science.

[28]  E. Roth,et al.  ABSOLUTE ISOTOPIC SCALE FOR DEUTERIUM ANALYSIS OF NATURAL WATERS. ABSOLUTE D/H RATIO FOR SMOW. , 1970 .

[29]  Y. Golvan,et al.  Stable isotope contents of porewater in a claystone formation (Tournemire, France) : assessment of the extraction technique and preliminary results , 1997 .

[30]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[31]  P. Baertschi Absolute18O content of standard mean ocean water , 1976 .

[32]  W. Stone Paleohydrologic implications of some deep soilwater chloride profiles, Murray Basin, South Australia , 1992 .

[33]  Y. Golvan,et al.  In situ and laboratory investigations of fluid flow through an argillaceous formation at different scales of space and time, Tournemire tunnel, southern France , 2001 .

[34]  I. Edelman,et al.  Self-diffusion and Structure of Liquid Water. III. Measurement of the Self-diffusion of Liquid Water with H2, H3 and O18 as Tracers1 , 1953 .

[35]  J. Blanc Gèodynamique et histoire du karst-application au sud-est de la France... , 1997 .

[36]  A. Love,et al.  Relative importance of physical and geochemical processes affecting solute distributions in a clay aquitard , 2001 .

[37]  J. Zachos,et al.  Evolution of Early Cenozoic marine temperatures , 1994 .

[38]  P. Kitanidis Comment on “A reassessment of the groundwater inverse problem” by D. McLaughlin and L. R. Townley , 1997 .

[39]  kwang-yul kim,et al.  Comparison of longterm greenhouse projections with the geologic record , 1995 .

[40]  F. Schwartz,et al.  An alternative view on the origin of chemical and isotopic patterns in groundwater from the Milk River Aquifer, Canada , 1988 .

[41]  Helmut Pitsch,et al.  Extraction of water and solutes from argillaceous rocks for geochemical characterisation: Methods, processes and current understanding , 2001 .

[42]  Reply [to “Comment on ‘A reassessment of the groundwater inverse problem’ by D. McLaughlin and L. R. Townley”] , 1997 .

[43]  C. E. Neuzil,et al.  Osmotic generation of ‘anomalous’ fluid pressures in geological environments , 2000, Nature.

[44]  P. Valdes,et al.  Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean , 2000 .

[45]  L. Wassenaar,et al.  Implications of the distribution of δD in pore waters for groundwater flow and the timing of geologic events in a thick aquitard system , 1999 .

[46]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[47]  Max Coleman,et al.  Reduction of water with zinc for hydrogen isotope analysis , 1982 .